YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Dynamic Systems, Measurement, and Control
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Dynamic Systems, Measurement, and Control
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Nonlinear Feedback Control of the Inductrack System Based on a Transient Model

    Source: Journal of Dynamic Systems, Measurement, and Control:;2021:;volume( 143 ):;issue: 008::page 081003-1
    Author:
    Wang, Ruiyang
    ,
    Yang, Bingen
    ,
    Gao, Hao
    DOI: 10.1115/1.4050257
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: As a new strategy for magnetic levitation envisioned in the 1990s, the Inductrack system with Halbach arrays of permanent magnets has been intensively researched. The previous investigations discovered that an uncontrolled Inductrack system may be unstable even if the vehicle travels well below its operating speed and that instability can be persistent near and beyond the operating speed. It is therefore necessary to stabilize the system for safety and reliability. With strong nonlinearities and complicated electromagneto-mechanical coupling, however, the transient response of such a dynamic system is difficult to predict with fidelity. Because of this, model-based feedback control of Inductrack systems has not been well addressed. In this paper, by taking advantage of a recently available two degrees-of-freedom transient model, a new feedback control method for Inductrack systems is proposed. In the control system development, active Halbach arrays are used as an actuator, and a feedback control law, which combines a properly tuned proportional-integral-derivative controller and a nonlinear force-current mapping function, is created. The proposed control law is validated in numerical examples, where the transient motion of an Inductrack vehicle traveling at constant speeds is considered. As shown in the simulation, the control law efficiently stabilizes the Inductrack system in a wide range of operating speed, and in the meantime, it renders a smooth system output (real-time levitation gap) with fast convergence to any prescribed reference step input (desired levitation gap).
    • Download: (2.153Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Nonlinear Feedback Control of the Inductrack System Based on a Transient Model

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4278028
    Collections
    • Journal of Dynamic Systems, Measurement, and Control

    Show full item record

    contributor authorWang, Ruiyang
    contributor authorYang, Bingen
    contributor authorGao, Hao
    date accessioned2022-02-06T05:26:29Z
    date available2022-02-06T05:26:29Z
    date copyright3/19/2021 12:00:00 AM
    date issued2021
    identifier issn0022-0434
    identifier otherds_143_08_081003.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4278028
    description abstractAs a new strategy for magnetic levitation envisioned in the 1990s, the Inductrack system with Halbach arrays of permanent magnets has been intensively researched. The previous investigations discovered that an uncontrolled Inductrack system may be unstable even if the vehicle travels well below its operating speed and that instability can be persistent near and beyond the operating speed. It is therefore necessary to stabilize the system for safety and reliability. With strong nonlinearities and complicated electromagneto-mechanical coupling, however, the transient response of such a dynamic system is difficult to predict with fidelity. Because of this, model-based feedback control of Inductrack systems has not been well addressed. In this paper, by taking advantage of a recently available two degrees-of-freedom transient model, a new feedback control method for Inductrack systems is proposed. In the control system development, active Halbach arrays are used as an actuator, and a feedback control law, which combines a properly tuned proportional-integral-derivative controller and a nonlinear force-current mapping function, is created. The proposed control law is validated in numerical examples, where the transient motion of an Inductrack vehicle traveling at constant speeds is considered. As shown in the simulation, the control law efficiently stabilizes the Inductrack system in a wide range of operating speed, and in the meantime, it renders a smooth system output (real-time levitation gap) with fast convergence to any prescribed reference step input (desired levitation gap).
    publisherThe American Society of Mechanical Engineers (ASME)
    titleNonlinear Feedback Control of the Inductrack System Based on a Transient Model
    typeJournal Paper
    journal volume143
    journal issue8
    journal titleJournal of Dynamic Systems, Measurement, and Control
    identifier doi10.1115/1.4050257
    journal fristpage081003-1
    journal lastpage081003-13
    page13
    treeJournal of Dynamic Systems, Measurement, and Control:;2021:;volume( 143 ):;issue: 008
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian