YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Electronic Packaging
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Electronic Packaging
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Development of a High Cycle Fatigue Life Prediction Model for Thin Film Silicon Structures

    Source: Journal of Electronic Packaging:;2018:;volume( 140 ):;issue: 003::page 31008
    Author:
    Chang, Chia-Cheng
    ,
    Lin, Sheng-Da
    ,
    Chiang, Kuo-Ning
    DOI: 10.1115/1.4040297
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: The fatigue characteristics of microelectromechanical systems (MEMS) material, such as silicon or polysilicon, have become very important. Many studies have focused on this topic, but none have defined a good methodology for extracting the applied stress and predicting fatigue life accurately. In this study, a methodology was developed for the life prediction of a polysilicon microstructure under bending tests. Based on the fatigue experiments conducted by Hocheng et al. (2008, “Various Fatigue Testing of Polycrystalline Silicon Microcantilever Beam in Bending,” Jpn. J. Appl. Phys., 47, pp. 5256–5261) and (Hung and Hocheng, 2012, “Frequency Effects and Life Prediction of Polysilicon Microcantilever Beams in Bending Fatigue,” J. Micro/Nanolithogr., MEMS MOEMS, 11, p. 021206), cantilever beams with different dimensions were remodeled with mesh control technology using finite element analysis (FEA) software to extract the stress magnitude. The mesh size, anchor boundary, loading boundary, critical stress definition, and solution type were well modified to obtain more correct stress values. Based on the new stress data extracted from the modified models, the optimized stress-number of life curve (S–N curve) was obtained, and the new life-prediction equation was found to be referable for polysilicon thin film life prediction under bending loads. After comparing the literature and confirming the new models, the frequency effect was observed only for the force control type and not for the displacement control type.
    • Download: (2.629Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Development of a High Cycle Fatigue Life Prediction Model for Thin Film Silicon Structures

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4254146
    Collections
    • Journal of Electronic Packaging

    Show full item record

    contributor authorChang, Chia-Cheng
    contributor authorLin, Sheng-Da
    contributor authorChiang, Kuo-Ning
    date accessioned2019-02-28T11:14:11Z
    date available2019-02-28T11:14:11Z
    date copyright6/26/2018 12:00:00 AM
    date issued2018
    identifier issn1043-7398
    identifier otherep_140_03_031008.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4254146
    description abstractThe fatigue characteristics of microelectromechanical systems (MEMS) material, such as silicon or polysilicon, have become very important. Many studies have focused on this topic, but none have defined a good methodology for extracting the applied stress and predicting fatigue life accurately. In this study, a methodology was developed for the life prediction of a polysilicon microstructure under bending tests. Based on the fatigue experiments conducted by Hocheng et al. (2008, “Various Fatigue Testing of Polycrystalline Silicon Microcantilever Beam in Bending,” Jpn. J. Appl. Phys., 47, pp. 5256–5261) and (Hung and Hocheng, 2012, “Frequency Effects and Life Prediction of Polysilicon Microcantilever Beams in Bending Fatigue,” J. Micro/Nanolithogr., MEMS MOEMS, 11, p. 021206), cantilever beams with different dimensions were remodeled with mesh control technology using finite element analysis (FEA) software to extract the stress magnitude. The mesh size, anchor boundary, loading boundary, critical stress definition, and solution type were well modified to obtain more correct stress values. Based on the new stress data extracted from the modified models, the optimized stress-number of life curve (S–N curve) was obtained, and the new life-prediction equation was found to be referable for polysilicon thin film life prediction under bending loads. After comparing the literature and confirming the new models, the frequency effect was observed only for the force control type and not for the displacement control type.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleDevelopment of a High Cycle Fatigue Life Prediction Model for Thin Film Silicon Structures
    typeJournal Paper
    journal volume140
    journal issue3
    journal titleJournal of Electronic Packaging
    identifier doi10.1115/1.4040297
    journal fristpage31008
    journal lastpage031008-7
    treeJournal of Electronic Packaging:;2018:;volume( 140 ):;issue: 003
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian