contributor author | Ling, J. H. L. | |
contributor author | Tay, A. A. O. | |
date accessioned | 2017-05-09T01:06:45Z | |
date available | 2017-05-09T01:06:45Z | |
date issued | 2014 | |
identifier issn | 1528-9044 | |
identifier other | ep_136_01_011007.pdf | |
identifier uri | http://yetl.yabesh.ir/yetl/handle/yetl/154448 | |
description abstract | The peak junction temperature has a profound effect on the operational lifetime and performance of high powered microwave devices. Although numerical analysis can help to estimate the peak junction temperature, it can be computationally expensive and time consuming when investigating the effect of the device geometry and material properties on the performance of the device. On the other hand, a closedform analytical method will allow similar studies to be done easily and quickly. Although some previous analytical solutions have been proposed, the solutions either require overlong computational times or are not so accurate. In this paper, an accurate closedform analytical solution for the junction temperature of power amplifier field effect transistors (FETs) or monolithic microwave integrated circuits (MMICs) is presented. Its derivation is based on the Green's function integral method on a point heat source developed through the method of images. Unlike most previous works, the location of the heat dissipation region is assumed to be embedded under the gate. Since it is a closedform solution, the junction temperature as well as the temperature distribution around the gate can be easily calculated. Consequently, the effect of various design parameters and material properties affecting the junction temperature of the device can be easily investigated. This work is also applicable to multifinger devices by employing superposition techniques and has been shown to agree well with both numerical and experimental results. | |
publisher | The American Society of Mechanical Engineers (ASME) | |
title | A New Accurate Closed Form Analytical Solution for Junction Temperature of High Powered Devices | |
type | Journal Paper | |
journal volume | 136 | |
journal issue | 1 | |
journal title | Journal of Electronic Packaging | |
identifier doi | 10.1115/1.4026352 | |
journal fristpage | 11007 | |
journal lastpage | 11007 | |
identifier eissn | 1043-7398 | |
tree | Journal of Electronic Packaging:;2014:;volume( 136 ):;issue: 001 | |
contenttype | Fulltext | |