Show simple item record

contributor authorLing, J. H. L.
contributor authorTay, A. A. O.
date accessioned2017-05-09T01:06:45Z
date available2017-05-09T01:06:45Z
date issued2014
identifier issn1528-9044
identifier otherep_136_01_011007.pdf
identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/154448
description abstractThe peak junction temperature has a profound effect on the operational lifetime and performance of high powered microwave devices. Although numerical analysis can help to estimate the peak junction temperature, it can be computationally expensive and time consuming when investigating the effect of the device geometry and material properties on the performance of the device. On the other hand, a closedform analytical method will allow similar studies to be done easily and quickly. Although some previous analytical solutions have been proposed, the solutions either require overlong computational times or are not so accurate. In this paper, an accurate closedform analytical solution for the junction temperature of power amplifier field effect transistors (FETs) or monolithic microwave integrated circuits (MMICs) is presented. Its derivation is based on the Green's function integral method on a point heat source developed through the method of images. Unlike most previous works, the location of the heat dissipation region is assumed to be embedded under the gate. Since it is a closedform solution, the junction temperature as well as the temperature distribution around the gate can be easily calculated. Consequently, the effect of various design parameters and material properties affecting the junction temperature of the device can be easily investigated. This work is also applicable to multifinger devices by employing superposition techniques and has been shown to agree well with both numerical and experimental results.
publisherThe American Society of Mechanical Engineers (ASME)
titleA New Accurate Closed Form Analytical Solution for Junction Temperature of High Powered Devices
typeJournal Paper
journal volume136
journal issue1
journal titleJournal of Electronic Packaging
identifier doi10.1115/1.4026352
journal fristpage11007
journal lastpage11007
identifier eissn1043-7398
treeJournal of Electronic Packaging:;2014:;volume( 136 ):;issue: 001
contenttypeFulltext


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record