YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Electronic Packaging
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Electronic Packaging
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Hygromechanical Analysis of Liquid Crystal Display Panels

    Source: Journal of Electronic Packaging:;2013:;volume( 135 ):;issue: 004::page 41005
    Author:
    Ikeda, Toru
    ,
    Mizutani, Tomonori
    ,
    Miyake, Kiyoshi
    ,
    Miyazaki, Noriyuki
    DOI: 10.1115/1.4025527
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: Liquid crystal displays (LCDs) are getting larger, and the homogeneity of an LCD panel is becoming very important for the quality of the display. Inhomogeneity in an LCD panel can be caused by inhomogeneity of its materials and the defective production process, warpage of the panel due to changes in the temperature and humidity, and so on. In this study, we developed a scheme of hygromechanical analysis to reduce the warpage of an LCD. First, we measured the diffusion coefficients and Henry's law coefficients of the respective components of an LCD using a thermogravimetric analyzer (TGA) under controlled humidity. We then measured the coefficients of moisture expansion (CME) of the components using a humiditycontrolled thermomechanical analyzer (TMA). We analyzed the hygromechanical deformations of the respective components, a polarizing plate and an LCD panel using the finite element method (FEM) with measured diffusion coefficients, Henry's law coefficients and the CMEs of the respective components. The analyzed deformations of the respective components corresponded quantitatively with the deformations measured experimentally. However, the analyzed deformation of the polarizing plate did not correspond with the measured deformation perfectly. A polarizing plate is made by sandwiching a polarizer between two sheets of protection film. We ignored the effect of the thin boundary layer between the polarizer and its protecting film in this analysis, and the effect of this boundary layer on the diffusion of moisture may have caused the difference between the analysis and the measurement. The expected warpage of the analyzed LCD corresponded qualitatively with the measured warpage. However, the numerical analyzed strains near the edge of the LCD panel strongly shifted to the compression side compared to the experimental measured strains. A possible reason for this shift was the difference in the boundary condition at the edge of the LCD panel between the numerical analysis and the experimental measurement. The actual edge of the LCD panel was fastened by a bezel, and the contact condition between the LCD panel and the bezel was ambiguous. To perform a quantitative analysis, we will need to investigate the contact condition between the LCD panel and the bezel and introduce it to the numerical analysis. This is left for a future study. We qualitatively investigated the warpage of LCDs with two types of protecting film and different directions of polarizing plates using the developed technique of FEM analysis.
    • Download: (1.373Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Hygromechanical Analysis of Liquid Crystal Display Panels

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/151444
    Collections
    • Journal of Electronic Packaging

    Show full item record

    contributor authorIkeda, Toru
    contributor authorMizutani, Tomonori
    contributor authorMiyake, Kiyoshi
    contributor authorMiyazaki, Noriyuki
    date accessioned2017-05-09T00:57:45Z
    date available2017-05-09T00:57:45Z
    date issued2013
    identifier issn1528-9044
    identifier otherep_135_04_041005.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/151444
    description abstractLiquid crystal displays (LCDs) are getting larger, and the homogeneity of an LCD panel is becoming very important for the quality of the display. Inhomogeneity in an LCD panel can be caused by inhomogeneity of its materials and the defective production process, warpage of the panel due to changes in the temperature and humidity, and so on. In this study, we developed a scheme of hygromechanical analysis to reduce the warpage of an LCD. First, we measured the diffusion coefficients and Henry's law coefficients of the respective components of an LCD using a thermogravimetric analyzer (TGA) under controlled humidity. We then measured the coefficients of moisture expansion (CME) of the components using a humiditycontrolled thermomechanical analyzer (TMA). We analyzed the hygromechanical deformations of the respective components, a polarizing plate and an LCD panel using the finite element method (FEM) with measured diffusion coefficients, Henry's law coefficients and the CMEs of the respective components. The analyzed deformations of the respective components corresponded quantitatively with the deformations measured experimentally. However, the analyzed deformation of the polarizing plate did not correspond with the measured deformation perfectly. A polarizing plate is made by sandwiching a polarizer between two sheets of protection film. We ignored the effect of the thin boundary layer between the polarizer and its protecting film in this analysis, and the effect of this boundary layer on the diffusion of moisture may have caused the difference between the analysis and the measurement. The expected warpage of the analyzed LCD corresponded qualitatively with the measured warpage. However, the numerical analyzed strains near the edge of the LCD panel strongly shifted to the compression side compared to the experimental measured strains. A possible reason for this shift was the difference in the boundary condition at the edge of the LCD panel between the numerical analysis and the experimental measurement. The actual edge of the LCD panel was fastened by a bezel, and the contact condition between the LCD panel and the bezel was ambiguous. To perform a quantitative analysis, we will need to investigate the contact condition between the LCD panel and the bezel and introduce it to the numerical analysis. This is left for a future study. We qualitatively investigated the warpage of LCDs with two types of protecting film and different directions of polarizing plates using the developed technique of FEM analysis.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleHygromechanical Analysis of Liquid Crystal Display Panels
    typeJournal Paper
    journal volume135
    journal issue4
    journal titleJournal of Electronic Packaging
    identifier doi10.1115/1.4025527
    journal fristpage41005
    journal lastpage41005
    identifier eissn1043-7398
    treeJournal of Electronic Packaging:;2013:;volume( 135 ):;issue: 004
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian