YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Electronic Packaging
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Electronic Packaging
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    An Investigation of the Passive Cooling of Table Model Television Receivers

    Source: Journal of Electronic Packaging:;1990:;volume( 112 ):;issue: 004::page 279
    Author:
    M. S. Yuki
    ,
    J. R. Parsons
    ,
    R. J. Krane
    DOI: 10.1115/1.2904380
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: Economic and reliability considerations lead to the adoption of passive techniques for cooling by a combination of natural convection and radiation heat transfer. In order to facilitate the cooling by natural convection, thermal design engineers commonly incorporate vent openings in the walls of a receiver cabinet. Unfortunately, natural convection flows in complex, vented enclosures are presently not well understood and designers must employ “cut and try” methodologies to determine the sizes and locations of vent openings. Since vent openings are expensive to incorporate in consumer electronic products, it was decided to develop the techniques that would enable thermal designers to minimize the number of vent openings in a TV cabinet and maximize the effectiveness of those vents that are employed. Thus, the present study represents the first step in a rational program to develop the tools that will enable engineers to optimize the thermal design of a table model television receiver. In this initial work, experiments were performed to determine the effects of vent size and location on component cooling in a representative table model receiver. Vents were systematically blocked until the set was operated in a completely sealed condition. Measurements of component, air, and cabinet wall temperatures and the results of flow visualization experiments were used to assess the effects of various combinations of vent openings on the natural convection cooling of the receiver. Results indicate that: (1) the present design of the vent system of a representative, commercially available table model television receiver is adequate, but has not been optimized, and (2) significant improvements in the design of the vent could be achieved; that is, improved component cooling could be obtained with fewer vent openings. The results of this work, which should be directly applicable by thermal designers, will also serve to experimentally verify numerical models of the natural convection flows through television receivers that are currently under development.
    keyword(s): Cooling ,
    • Download: (1.007Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      An Investigation of the Passive Cooling of Table Model Television Receivers

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/106740
    Collections
    • Journal of Electronic Packaging

    Show full item record

    contributor authorM. S. Yuki
    contributor authorJ. R. Parsons
    contributor authorR. J. Krane
    date accessioned2017-05-08T23:32:19Z
    date available2017-05-08T23:32:19Z
    date copyrightDecember, 1990
    date issued1990
    identifier issn1528-9044
    identifier otherJEPAE4-26119#279_1.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/106740
    description abstractEconomic and reliability considerations lead to the adoption of passive techniques for cooling by a combination of natural convection and radiation heat transfer. In order to facilitate the cooling by natural convection, thermal design engineers commonly incorporate vent openings in the walls of a receiver cabinet. Unfortunately, natural convection flows in complex, vented enclosures are presently not well understood and designers must employ “cut and try” methodologies to determine the sizes and locations of vent openings. Since vent openings are expensive to incorporate in consumer electronic products, it was decided to develop the techniques that would enable thermal designers to minimize the number of vent openings in a TV cabinet and maximize the effectiveness of those vents that are employed. Thus, the present study represents the first step in a rational program to develop the tools that will enable engineers to optimize the thermal design of a table model television receiver. In this initial work, experiments were performed to determine the effects of vent size and location on component cooling in a representative table model receiver. Vents were systematically blocked until the set was operated in a completely sealed condition. Measurements of component, air, and cabinet wall temperatures and the results of flow visualization experiments were used to assess the effects of various combinations of vent openings on the natural convection cooling of the receiver. Results indicate that: (1) the present design of the vent system of a representative, commercially available table model television receiver is adequate, but has not been optimized, and (2) significant improvements in the design of the vent could be achieved; that is, improved component cooling could be obtained with fewer vent openings. The results of this work, which should be directly applicable by thermal designers, will also serve to experimentally verify numerical models of the natural convection flows through television receivers that are currently under development.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleAn Investigation of the Passive Cooling of Table Model Television Receivers
    typeJournal Paper
    journal volume112
    journal issue4
    journal titleJournal of Electronic Packaging
    identifier doi10.1115/1.2904380
    journal fristpage279
    journal lastpage287
    identifier eissn1043-7398
    keywordsCooling
    treeJournal of Electronic Packaging:;1990:;volume( 112 ):;issue: 004
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian