YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    Search 
    •   YE&T Library
    • Search
    •   YE&T Library
    • Search
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Search

    Show Advanced FiltersHide Advanced Filters

    Filters

    Use filters to refine the search results.

    Now showing items 1-6 of 6

    • Relevance
    • Title Asc
    • Title Desc
    • Year Asc
    • Year Desc
    • 5
    • 10
    • 20
    • 40
    • 60
    • 80
    • 100
  • Export
    • CSV
    • RIS
    • Sort Options:
    • Relevance
    • Title Asc
    • Title Desc
    • Issue Date Asc
    • Issue Date Desc
    • Results Per Page:
    • 5
    • 10
    • 20
    • 40
    • 60
    • 80
    • 100

    Intelligent Pixel-Level Rail Running Band Detection Based on Deep Learning 

    Source: Journal of Infrastructure Systems:;2024:;Volume ( 030 ):;issue: 003:;page 04024007-1
    Author(s): Xiancai Yang; Mingjing Yue; Allen A. Zhang; Yao Qian; Jingmang Xu; Ping Wang; Zeyu Liu
    Publisher: American Society of Civil Engineers
    Abstract: The rail running band is a mathematical representation describing the continuous strip-shaped spatial surface resulting from the rolling contact operation of train wheels on the rail surface, which establishes a direct ...
    Request PDF

    Fusion of Convolution Neural Network and Visual Transformer for Lithology Identification Using Tunnel Face Images 

    Source: Journal of Computing in Civil Engineering:;2025:;Volume ( 039 ):;issue: 002:;page 04024056-1
    Author(s): Jianjun Tong; Lulu Xiang; Allen A. Zhang; Xingwang Miao; Mingnian Wang; Pei Ye
    Publisher: American Society of Civil Engineers
    Abstract: This study proposes an intelligent method for recognizing the lithology of a tunnel working face by combining a convolutional neural network and visual transformer. First, an efficient method for collecting high-resolution ...
    Request PDF

    Policy Gradient–Based Focal Loss to Reduce False Negative Errors of Convolutional Neural Networks for Pavement Crack Segmentation 

    Source: Journal of Infrastructure Systems:;2023:;Volume ( 029 ):;issue: 001:;page 04023002-1
    Author(s): Enhui Yang; Youzhi Tang; Allen A. Zhang; Kelvin C. P. Wang; Yanjun Qiu
    Publisher: American Society of Civil Engineers
    Abstract: Convolutional neural networks (CNNs) have achieved tremendous success in pavement crack segmentation. However, it is difficult for CNN-based crack segmentation methods to minimize false-negative and false-positive errors. ...
    Request PDF

    Intelligent Detection of Sealed Crack with 2D Asphalt Pavement Images 

    Source: Journal of Transportation Engineering, Part B: Pavements:;2025:;Volume ( 151 ):;issue: 001:;page 04024054-1
    Author(s): Allen A. Zhang; Xinyi Xu; Yue Ding; Yao Qian; Zishuo Dong; Hang Zhang; Anzheng He
    Publisher: American Society of Civil Engineers
    Abstract: Accurately identifying sealed cracks on asphalt pavement surfaces is of significant importance to pavement management. This paper proposes an efficient semantic segmentation model called Parallel-TDNet for pixel-level ...
    Request PDF

    Automated Detection of Pavement Manhole on Asphalt Pavements with an Improved YOLOX 

    Source: Journal of Infrastructure Systems:;2023:;Volume ( 029 ):;issue: 004:;page 04023023-1
    Author(s): Hang Zhang; Jing Shang; Zishuo Dong; Anzheng He; Allen A. Zhang; Yang Liu; Kelvin C. P. Wang; Zhihao Lin
    Publisher: ASCE
    Abstract: Accurate recognition and location of pavement manholes are of great significance for pavement maintenance. This paper proposes an improved You only look once X (YOLOX) for automated detection of manholes on asphalt pavements. ...
    Request PDF

    Automatic Pavement Type Recognition for Image-Based Pavement Condition Survey Using Convolutional Neural Network 

    Source: Journal of Computing in Civil Engineering:;2021:;Volume ( 035 ):;issue: 001:;page 04020060
    Author(s): Guangwei Yang; Kelvin C. P. Wang; Joshua Qiang Li; Yue Fei; Yang Liu; Kamyar C. Mahboub; Allen A. Zhang
    Publisher: ASCE
    Abstract: Image-based systems are becoming popular to collect pavement condition data for pavement management activities. Pavement engineers define various distress categories based on pavement types. However, software solutions ...
    Request PDF
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     

    Author

    ... View More

    Publisher

    Year

    Type

    Content Type

    Publication Title

    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian