contributor author | R. J. Caudill | |
contributor author | L. M. Sweet | |
contributor author | K. Oda | |
date accessioned | 2017-05-08T23:12:54Z | |
date available | 2017-05-08T23:12:54Z | |
date copyright | September, 1982 | |
date issued | 1982 | |
identifier issn | 0022-0434 | |
identifier other | JDSMAA-26073#238_1.pdf | |
identifier uri | http://yetl.yabesh.ir/yetl/handle/yetl/95608 | |
description abstract | The potential for improved dynamic performance of conventional rail vehicles through control of linear induction or synchronous motors is explored. Improvements in vehicle stability, ride quality, traction capability, track loading, derailment safety, and curving performance result from use of controllable lateral and normal forces present in the motor. Recent advances in technology originally developed for high-speed levitated vehicles are applied to conventional railroad systems which have a greater potential for near-term implementation. The dynamic performance of alternate configurations, consisting of several generic motor types mounted either on trucks or carbodies, are evaluated. Significant improvements in both lateral dynamic stability and curving performance may be realized through magnetic guidance of the trucks using force levels well within the capability of existing linear motor technology. | |
publisher | The American Society of Mechanical Engineers (ASME) | |
title | Magnetic Guidance of Conventional Railroad Vehicles | |
type | Journal Paper | |
journal volume | 104 | |
journal issue | 3 | |
journal title | Journal of Dynamic Systems, Measurement, and Control | |
identifier doi | 10.1115/1.3139703 | |
journal fristpage | 238 | |
journal lastpage | 246 | |
identifier eissn | 1528-9028 | |
tree | Journal of Dynamic Systems, Measurement, and Control:;1982:;volume( 104 ):;issue: 003 | |
contenttype | Fulltext | |