YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Dynamic Systems, Measurement, and Control
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Dynamic Systems, Measurement, and Control
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Optimum Path Planning for Mechanical Manipulators

    Source: Journal of Dynamic Systems, Measurement, and Control:;1981:;volume( 103 ):;issue: 002::page 142
    Author:
    J. Y. S. Luh
    ,
    C. S. Lin
    DOI: 10.1115/1.3139654
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: To assure a successful completion of an assigned task without interruption, such as the collision with fixtures, the hand of a mechanical manipulator often travels along a preplanned path. An advantage of requiring the path to be composed of straight-line segments in Cartesian coordinates is to provide a capability for controlled interaction with objects on a moving conveyor. This paper presents a method of obtaining a time schedule of velocities and accelerations along the path that the manipulator may adopt to obtain a minimum traveling time, under the constraints of composite Cartesian limit on linear and angular velocities and accelerations. Because of the involvement of a linear performance index and a large number of nonlinear inequality constraints, which are generated from physical limitations, the “method of approximate programming (MAP)” is applied. Depending on the initial choice of a feasible solution, the iterated feasible solution, however, does not converge to the optimum feasible point, but is often entrapped at some other point of the boundary of the constraint set. To overcome the obstacle, MAP is modified so that the feasible solution of each of the iterated linear programming problems is shifted to the boundaries corresponding to the original, linear inequality constraints. To reduce the computing time, a “direct approximate programming algorithm (DAPA)” is developed, implemented and shown to converge to optimum feasible solution for the path planning problem. Programs in FORTRAN language have been written for both the modified MAP and DAPA, and are illustrated by a numerical example for the purpose of comparison.
    • Download: (874.0Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Optimum Path Planning for Mechanical Manipulators

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/94374
    Collections
    • Journal of Dynamic Systems, Measurement, and Control

    Show full item record

    contributor authorJ. Y. S. Luh
    contributor authorC. S. Lin
    date accessioned2017-05-08T23:10:49Z
    date available2017-05-08T23:10:49Z
    date copyrightJune, 1981
    date issued1981
    identifier issn0022-0434
    identifier otherJDSMAA-26066#142_1.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/94374
    description abstractTo assure a successful completion of an assigned task without interruption, such as the collision with fixtures, the hand of a mechanical manipulator often travels along a preplanned path. An advantage of requiring the path to be composed of straight-line segments in Cartesian coordinates is to provide a capability for controlled interaction with objects on a moving conveyor. This paper presents a method of obtaining a time schedule of velocities and accelerations along the path that the manipulator may adopt to obtain a minimum traveling time, under the constraints of composite Cartesian limit on linear and angular velocities and accelerations. Because of the involvement of a linear performance index and a large number of nonlinear inequality constraints, which are generated from physical limitations, the “method of approximate programming (MAP)” is applied. Depending on the initial choice of a feasible solution, the iterated feasible solution, however, does not converge to the optimum feasible point, but is often entrapped at some other point of the boundary of the constraint set. To overcome the obstacle, MAP is modified so that the feasible solution of each of the iterated linear programming problems is shifted to the boundaries corresponding to the original, linear inequality constraints. To reduce the computing time, a “direct approximate programming algorithm (DAPA)” is developed, implemented and shown to converge to optimum feasible solution for the path planning problem. Programs in FORTRAN language have been written for both the modified MAP and DAPA, and are illustrated by a numerical example for the purpose of comparison.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleOptimum Path Planning for Mechanical Manipulators
    typeJournal Paper
    journal volume103
    journal issue2
    journal titleJournal of Dynamic Systems, Measurement, and Control
    identifier doi10.1115/1.3139654
    journal fristpage142
    journal lastpage151
    identifier eissn1528-9028
    treeJournal of Dynamic Systems, Measurement, and Control:;1981:;volume( 103 ):;issue: 002
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian