YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Dynamic Systems, Measurement, and Control
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Dynamic Systems, Measurement, and Control
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    A Geometric Series Approach for Approximation of Transition Matrices in Quadratic Synthesis

    Source: Journal of Dynamic Systems, Measurement, and Control:;1980:;volume( 102 ):;issue: 003::page 193
    Author:
    L. S. Shieh
    ,
    R. E. Yates
    ,
    W. B. Wai
    DOI: 10.1115/1.3139634
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: A geometric-series approach is used to approximate the exponentials of Hamiltonian matrices for quadratic synthesis problems. The approximants of the discretized transition matrices are then used to construct piecewise-constant gains and piecewise-time varying gains for approximating a time-varying optimal gain and a time-varying Kalman gain. The proposed method is more accurate and computationally faster than those existing methods which use the Walsh function approach and the block-pulse function approach.
    • Download: (437.8Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      A Geometric Series Approach for Approximation of Transition Matrices in Quadratic Synthesis

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/93093
    Collections
    • Journal of Dynamic Systems, Measurement, and Control

    Show full item record

    contributor authorL. S. Shieh
    contributor authorR. E. Yates
    contributor authorW. B. Wai
    date accessioned2017-05-08T23:08:21Z
    date available2017-05-08T23:08:21Z
    date copyrightSeptember, 1980
    date issued1980
    identifier issn0022-0434
    identifier otherJDSMAA-26062#193_1.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/93093
    description abstractA geometric-series approach is used to approximate the exponentials of Hamiltonian matrices for quadratic synthesis problems. The approximants of the discretized transition matrices are then used to construct piecewise-constant gains and piecewise-time varying gains for approximating a time-varying optimal gain and a time-varying Kalman gain. The proposed method is more accurate and computationally faster than those existing methods which use the Walsh function approach and the block-pulse function approach.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleA Geometric Series Approach for Approximation of Transition Matrices in Quadratic Synthesis
    typeJournal Paper
    journal volume102
    journal issue3
    journal titleJournal of Dynamic Systems, Measurement, and Control
    identifier doi10.1115/1.3139634
    journal fristpage193
    journal lastpage197
    identifier eissn1528-9028
    treeJournal of Dynamic Systems, Measurement, and Control:;1980:;volume( 102 ):;issue: 003
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian