YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Dynamic Systems, Measurement, and Control
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Dynamic Systems, Measurement, and Control
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    On Gyrobondgraphs and Their Uses

    Source: Journal of Dynamic Systems, Measurement, and Control:;1978:;volume( 100 ):;issue: 001::page 76
    Author:
    R. C. Rosenberg
    DOI: 10.1115/1.3426343
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: Graphical representations of lumped-parameter models for physical and engineering systems have been in use for some time. A relatively recent arrival is the bond graph, which displays energy flow and energy structure explicitly. Bond graphs are finding increasing use in a variety of applications, including classical electromechanical, hydraulic, and thermal energy systems as well as chemical and biological processes. In addition, there has been some effort to extend the approach to energy-like macroeconomic systems. The standard bond graph approach uses the same basic elements commonly found in network theory, although the graphing scheme is different. This paper defines a specific type of bond graph—the gyrobondgraph—and shows how it serves as a canonical form for a large class of lumped-parameter multiport models. The gyrobondgraph is based on only five elements and a standard graph format. A transformation procedure is described for obtaining a gyrobondgraph from a standard bond graph. The formulation of system equations associated with a gyrobondgraph is discussed briefly, and, as a point of interest, Tellegen’s Theorem in quasi-power form is derived. The gyrobondgraph appears to be an important new tool for the exploration of multiport system theory; furthermore, it is a source of new techniques for the computer simulation of bond graph models.
    • Download: (751.5Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      On Gyrobondgraphs and Their Uses

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/90920
    Collections
    • Journal of Dynamic Systems, Measurement, and Control

    Show full item record

    contributor authorR. C. Rosenberg
    date accessioned2017-05-08T23:04:35Z
    date available2017-05-08T23:04:35Z
    date copyrightMarch, 1978
    date issued1978
    identifier issn0022-0434
    identifier otherJDSMAA-26049#76_1.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/90920
    description abstractGraphical representations of lumped-parameter models for physical and engineering systems have been in use for some time. A relatively recent arrival is the bond graph, which displays energy flow and energy structure explicitly. Bond graphs are finding increasing use in a variety of applications, including classical electromechanical, hydraulic, and thermal energy systems as well as chemical and biological processes. In addition, there has been some effort to extend the approach to energy-like macroeconomic systems. The standard bond graph approach uses the same basic elements commonly found in network theory, although the graphing scheme is different. This paper defines a specific type of bond graph—the gyrobondgraph—and shows how it serves as a canonical form for a large class of lumped-parameter multiport models. The gyrobondgraph is based on only five elements and a standard graph format. A transformation procedure is described for obtaining a gyrobondgraph from a standard bond graph. The formulation of system equations associated with a gyrobondgraph is discussed briefly, and, as a point of interest, Tellegen’s Theorem in quasi-power form is derived. The gyrobondgraph appears to be an important new tool for the exploration of multiport system theory; furthermore, it is a source of new techniques for the computer simulation of bond graph models.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleOn Gyrobondgraphs and Their Uses
    typeJournal Paper
    journal volume100
    journal issue1
    journal titleJournal of Dynamic Systems, Measurement, and Control
    identifier doi10.1115/1.3426343
    journal fristpage76
    journal lastpage82
    identifier eissn1528-9028
    treeJournal of Dynamic Systems, Measurement, and Control:;1978:;volume( 100 ):;issue: 001
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian