YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Dynamic Systems, Measurement, and Control
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Dynamic Systems, Measurement, and Control
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Regret Analysis of Shrinking Horizon Model Predictive Control

    Source: Journal of Dynamic Systems, Measurement, and Control:;2024:;volume( 147 ):;issue: 002::page 21007-1
    Author:
    Ambrosino, Michele
    ,
    Castroviejo-Fernandez, Miguel
    ,
    Leung, Jordan
    ,
    Kolmanovsky, Ilya
    DOI: 10.1115/1.4066317
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: This paper analyzes the suboptimal implementation of shrinking horizon model predictive control (SHMPC) when a fixed number of solver iterations and a warm-start are utilized at each time-step to solve the underlying optimal control problem (OCP). We derive bounds on the loss of performance (regret) and on the difference between suboptimal SHMPC and optimal solutions. This analysis provides insights and practical guidelines for the implementation of SHMPC under computational limitations. A numerical example of axisymmetric spacecraft spin stabilization is reported. The suboptimal implementation of SHMPC is shown to be capable of steering the system from an initial state into a known terminal set while satisfying control constraints.
    • Download: (944.5Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Regret Analysis of Shrinking Horizon Model Predictive Control

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4305714
    Collections
    • Journal of Dynamic Systems, Measurement, and Control

    Show full item record

    contributor authorAmbrosino, Michele
    contributor authorCastroviejo-Fernandez, Miguel
    contributor authorLeung, Jordan
    contributor authorKolmanovsky, Ilya
    date accessioned2025-04-21T10:12:33Z
    date available2025-04-21T10:12:33Z
    date copyright9/12/2024 12:00:00 AM
    date issued2024
    identifier issn0022-0434
    identifier otherds_147_02_021007.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4305714
    description abstractThis paper analyzes the suboptimal implementation of shrinking horizon model predictive control (SHMPC) when a fixed number of solver iterations and a warm-start are utilized at each time-step to solve the underlying optimal control problem (OCP). We derive bounds on the loss of performance (regret) and on the difference between suboptimal SHMPC and optimal solutions. This analysis provides insights and practical guidelines for the implementation of SHMPC under computational limitations. A numerical example of axisymmetric spacecraft spin stabilization is reported. The suboptimal implementation of SHMPC is shown to be capable of steering the system from an initial state into a known terminal set while satisfying control constraints.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleRegret Analysis of Shrinking Horizon Model Predictive Control
    typeJournal Paper
    journal volume147
    journal issue2
    journal titleJournal of Dynamic Systems, Measurement, and Control
    identifier doi10.1115/1.4066317
    journal fristpage21007-1
    journal lastpage21007-8
    page8
    treeJournal of Dynamic Systems, Measurement, and Control:;2024:;volume( 147 ):;issue: 002
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian