YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Electronic Packaging
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Electronic Packaging
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Effect of Dispensing Type on Void Formation Using Convolutional Neural Network

    Source: Journal of Electronic Packaging:;2024:;volume( 147 ):;issue: 001::page 11006-1
    Author:
    Azahari, Muhammad Taufik
    ,
    Ling, Calvin
    ,
    Abas, Aizat
    ,
    Ng, Fei Chong
    DOI: 10.1115/1.4065078
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: Underfilling in flip chip packages is a critical component of reliability. This study utilized I-type, L-type, and U-type dispensing methods to address the issue, namely, voiding that creates empty spaces, which compromises reliability. An automated solution using convolutional neural network (CNN) is proposed for void detection in chip images to replace the conventional manual inspection approach. The CNN model built on MobileNetV2 attains a mean average precision of 0.533. This method calculates void percentage, adhering to Institute for Interconnecting and Packaging Electronic Circuits (IPC) standards, to determine product acceptance or rejection, offering an efficient solution for quality control in flip-chip package manufacturing.
    • Download: (5.881Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Effect of Dispensing Type on Void Formation Using Convolutional Neural Network

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4305589
    Collections
    • Journal of Electronic Packaging

    Show full item record

    contributor authorAzahari, Muhammad Taufik
    contributor authorLing, Calvin
    contributor authorAbas, Aizat
    contributor authorNg, Fei Chong
    date accessioned2025-04-21T10:08:40Z
    date available2025-04-21T10:08:40Z
    date copyright8/9/2024 12:00:00 AM
    date issued2024
    identifier issn1043-7398
    identifier otherep_147_01_011006.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4305589
    description abstractUnderfilling in flip chip packages is a critical component of reliability. This study utilized I-type, L-type, and U-type dispensing methods to address the issue, namely, voiding that creates empty spaces, which compromises reliability. An automated solution using convolutional neural network (CNN) is proposed for void detection in chip images to replace the conventional manual inspection approach. The CNN model built on MobileNetV2 attains a mean average precision of 0.533. This method calculates void percentage, adhering to Institute for Interconnecting and Packaging Electronic Circuits (IPC) standards, to determine product acceptance or rejection, offering an efficient solution for quality control in flip-chip package manufacturing.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleEffect of Dispensing Type on Void Formation Using Convolutional Neural Network
    typeJournal Paper
    journal volume147
    journal issue1
    journal titleJournal of Electronic Packaging
    identifier doi10.1115/1.4065078
    journal fristpage11006-1
    journal lastpage11006-17
    page17
    treeJournal of Electronic Packaging:;2024:;volume( 147 ):;issue: 001
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian