YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Dynamic Systems, Measurement, and Control
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Dynamic Systems, Measurement, and Control
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Dynamic Mode Decomposition With Gaussian Process Regression for Control of High-Dimensional Nonlinear Systems

    Source: Journal of Dynamic Systems, Measurement, and Control:;2024:;volume( 146 ):;issue: 006::page 64501-1
    Author:
    Tsolovikos, Alexandros
    ,
    Bakolas, Efstathios
    ,
    Goldstein, David
    DOI: 10.1115/1.4065594
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: In this work, we consider the problem of learning a reduced-order model of a high-dimensional stochastic nonlinear system with control inputs from noisy data. In particular, we develop a hybrid parametric/nonparametric model that learns the “average” linear dynamics in the data using dynamic mode decomposition with control (DMDc) and the nonlinearities and model uncertainties using Gaussian process (GP) regression and compare it with total least-squares dynamic mode decomposition (tlsDMD), extended here to systems with control inputs (tlsDMDc). The proposed approach is also compared with existing methods, such as DMDc-only and GP-only models, in two tasks: controlling the stochastic nonlinear Stuart–Landau equation and predicting the flowfield induced by a jet-like body force field in a turbulent boundary layer using data from large-scale numerical simulations.
    • Download: (1.673Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Dynamic Mode Decomposition With Gaussian Process Regression for Control of High-Dimensional Nonlinear Systems

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4302824
    Collections
    • Journal of Dynamic Systems, Measurement, and Control

    Show full item record

    contributor authorTsolovikos, Alexandros
    contributor authorBakolas, Efstathios
    contributor authorGoldstein, David
    date accessioned2024-12-24T18:49:40Z
    date available2024-12-24T18:49:40Z
    date copyright6/17/2024 12:00:00 AM
    date issued2024
    identifier issn0022-0434
    identifier otherds_146_06_064501.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4302824
    description abstractIn this work, we consider the problem of learning a reduced-order model of a high-dimensional stochastic nonlinear system with control inputs from noisy data. In particular, we develop a hybrid parametric/nonparametric model that learns the “average” linear dynamics in the data using dynamic mode decomposition with control (DMDc) and the nonlinearities and model uncertainties using Gaussian process (GP) regression and compare it with total least-squares dynamic mode decomposition (tlsDMD), extended here to systems with control inputs (tlsDMDc). The proposed approach is also compared with existing methods, such as DMDc-only and GP-only models, in two tasks: controlling the stochastic nonlinear Stuart–Landau equation and predicting the flowfield induced by a jet-like body force field in a turbulent boundary layer using data from large-scale numerical simulations.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleDynamic Mode Decomposition With Gaussian Process Regression for Control of High-Dimensional Nonlinear Systems
    typeJournal Paper
    journal volume146
    journal issue6
    journal titleJournal of Dynamic Systems, Measurement, and Control
    identifier doi10.1115/1.4065594
    journal fristpage64501-1
    journal lastpage64501-7
    page7
    treeJournal of Dynamic Systems, Measurement, and Control:;2024:;volume( 146 ):;issue: 006
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian