YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Dynamic Systems, Measurement, and Control
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Dynamic Systems, Measurement, and Control
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Learning Scalable Decentralized Controllers for Heterogeneous Robot Swarms With Graph Neural Networks

    Source: Journal of Dynamic Systems, Measurement, and Control:;2024:;volume( 146 ):;issue: 006::page 61107-1
    Author:
    Omotuyi, Oyindamola
    ,
    Kumar, Manish
    DOI: 10.1115/1.4065757
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: Distributed multi-agent systems are becoming increasingly crucial for diverse applications in robotics because of their capacity for scalability, efficiency, robustness, resilience, and the ability to accomplish complex tasks. Controlling these large-scale swarms by relying on local information is very challenging. Although centralized methods are generally efficient or optimal, they face the issue of scalability and are often impractical. Given the challenge of finding an efficient decentralized controller that uses only local information to accomplish a global task, we propose a learning-based approach to decentralized control using supervised learning. Our approach entails training controllers to imitate a centralized controller's behavior but uses only local information to make decisions. The controller is parameterized by aggregation graph neural networks (GNNs) that integrate information from remote neighbors. The problems of segregation and aggregation of a swarm of heterogeneous agents are explored in 2D and 3D point mass systems as two use cases to illustrate the effectiveness of the proposed framework. The decentralized controller is trained using data from a centralized (expert) controller derived from the concept of artificial differential potential. Our learned models successfully transfer to actual robot dynamics in physics-based Turtlebot3 robot swarms in Gazebo/ROS2 simulations and hardware implementation and Crazyflie quadrotor swarms in Pybullet simulations. Our experiments show that our controller performs comparably to the centralized controller and demonstrates superior performance compared to a local controller. Additionally, we showed that the controller is scalable by analyzing larger teams and diverse groups with up to 100 robots.
    • Download: (6.877Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Learning Scalable Decentralized Controllers for Heterogeneous Robot Swarms With Graph Neural Networks

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4302821
    Collections
    • Journal of Dynamic Systems, Measurement, and Control

    Show full item record

    contributor authorOmotuyi, Oyindamola
    contributor authorKumar, Manish
    date accessioned2024-12-24T18:49:33Z
    date available2024-12-24T18:49:33Z
    date copyright8/24/2024 12:00:00 AM
    date issued2024
    identifier issn0022-0434
    identifier otherds_146_06_061107.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4302821
    description abstractDistributed multi-agent systems are becoming increasingly crucial for diverse applications in robotics because of their capacity for scalability, efficiency, robustness, resilience, and the ability to accomplish complex tasks. Controlling these large-scale swarms by relying on local information is very challenging. Although centralized methods are generally efficient or optimal, they face the issue of scalability and are often impractical. Given the challenge of finding an efficient decentralized controller that uses only local information to accomplish a global task, we propose a learning-based approach to decentralized control using supervised learning. Our approach entails training controllers to imitate a centralized controller's behavior but uses only local information to make decisions. The controller is parameterized by aggregation graph neural networks (GNNs) that integrate information from remote neighbors. The problems of segregation and aggregation of a swarm of heterogeneous agents are explored in 2D and 3D point mass systems as two use cases to illustrate the effectiveness of the proposed framework. The decentralized controller is trained using data from a centralized (expert) controller derived from the concept of artificial differential potential. Our learned models successfully transfer to actual robot dynamics in physics-based Turtlebot3 robot swarms in Gazebo/ROS2 simulations and hardware implementation and Crazyflie quadrotor swarms in Pybullet simulations. Our experiments show that our controller performs comparably to the centralized controller and demonstrates superior performance compared to a local controller. Additionally, we showed that the controller is scalable by analyzing larger teams and diverse groups with up to 100 robots.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleLearning Scalable Decentralized Controllers for Heterogeneous Robot Swarms With Graph Neural Networks
    typeJournal Paper
    journal volume146
    journal issue6
    journal titleJournal of Dynamic Systems, Measurement, and Control
    identifier doi10.1115/1.4065757
    journal fristpage61107-1
    journal lastpage61107-19
    page19
    treeJournal of Dynamic Systems, Measurement, and Control:;2024:;volume( 146 ):;issue: 006
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian