YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Electronic Packaging
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Electronic Packaging
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Optimal Design of Thermal Cycling Reliability for Plastic Ball Grid Array Assembly Via Finite Element Method and Taguchi Method

    Source: Journal of Electronic Packaging:;2023:;volume( 146 ):;issue: 001::page 11009-1
    Author:
    Gao, Chao
    ,
    Huang, Chunyue
    ,
    Ying, Liang
    DOI: 10.1115/1.4064097
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: A finite element simulation analysis model was developed for a plastic ball grid array (PBGA) assembly to analyze its behavior under thermal cyclic loading conditions. The stress distribution in the SAC305 solder joints at different locations within the array was investigated by using ANAND constitutive equations. Subsequently, the thermal fatigue life of the key solder joints was quantified. The study also examined the influence of the solder joint diameter, substrate thickness, solder joint height, printed circuit board (PCB) thickness, and mold compound height on solder joint stress. Optimization of assembly parameters was achieved through the application of the Taguchi method. An extensive analysis was conducted using different assembly parameter combinations, employing the L9(34) orthogonal array design to explore the thermal cycling effects. The computed average Von Mises stress Δσ for the critical thin-layer elements of solder joints located in hazardous positions within the assembly was notably affected by variations in the solder joint height, substrate thickness, solder joint diameter, and mold compound height. This impact ranked in descending order of significance as solder joint height, substrate thickness, solder joint diameter, and mold compound height. The optimal parameter combination determined was a solder joint height of 0.70 mm, a solder joint diameter of 0.85 mm, a substrate thickness of 0.51 mm, and a mold compound height of 1.12 mm. Implementing this optimized configuration led to a significant 4.07% reduction in average stress Δσ for the critical thin-layer elements within hazardous solder joints. Moreover, the extension of the thermal fatigue life was notably improved, achieving an impressive 51.72% increase.
    • Download: (2.452Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Optimal Design of Thermal Cycling Reliability for Plastic Ball Grid Array Assembly Via Finite Element Method and Taguchi Method

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4295080
    Collections
    • Journal of Electronic Packaging

    Show full item record

    contributor authorGao, Chao
    contributor authorHuang, Chunyue
    contributor authorYing, Liang
    date accessioned2024-04-24T22:21:57Z
    date available2024-04-24T22:21:57Z
    date copyright12/11/2023 12:00:00 AM
    date issued2023
    identifier issn1043-7398
    identifier otherep_146_01_011009.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4295080
    description abstractA finite element simulation analysis model was developed for a plastic ball grid array (PBGA) assembly to analyze its behavior under thermal cyclic loading conditions. The stress distribution in the SAC305 solder joints at different locations within the array was investigated by using ANAND constitutive equations. Subsequently, the thermal fatigue life of the key solder joints was quantified. The study also examined the influence of the solder joint diameter, substrate thickness, solder joint height, printed circuit board (PCB) thickness, and mold compound height on solder joint stress. Optimization of assembly parameters was achieved through the application of the Taguchi method. An extensive analysis was conducted using different assembly parameter combinations, employing the L9(34) orthogonal array design to explore the thermal cycling effects. The computed average Von Mises stress Δσ for the critical thin-layer elements of solder joints located in hazardous positions within the assembly was notably affected by variations in the solder joint height, substrate thickness, solder joint diameter, and mold compound height. This impact ranked in descending order of significance as solder joint height, substrate thickness, solder joint diameter, and mold compound height. The optimal parameter combination determined was a solder joint height of 0.70 mm, a solder joint diameter of 0.85 mm, a substrate thickness of 0.51 mm, and a mold compound height of 1.12 mm. Implementing this optimized configuration led to a significant 4.07% reduction in average stress Δσ for the critical thin-layer elements within hazardous solder joints. Moreover, the extension of the thermal fatigue life was notably improved, achieving an impressive 51.72% increase.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleOptimal Design of Thermal Cycling Reliability for Plastic Ball Grid Array Assembly Via Finite Element Method and Taguchi Method
    typeJournal Paper
    journal volume146
    journal issue1
    journal titleJournal of Electronic Packaging
    identifier doi10.1115/1.4064097
    journal fristpage11009-1
    journal lastpage11009-9
    page9
    treeJournal of Electronic Packaging:;2023:;volume( 146 ):;issue: 001
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian