YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Dynamic Systems, Measurement, and Control
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Dynamic Systems, Measurement, and Control
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Model-Based Estimation of Vehicle Center of Gravity Height and Load

    Source: Journal of Dynamic Systems, Measurement, and Control:;2023:;volume( 145 ):;issue: 005::page 51001-1
    Author:
    Wittmer, Kelvin
    ,
    Sawodny, Oliver
    ,
    Henning, Kay-Uwe
    DOI: 10.1115/1.4056987
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: With an increasing number of driver assistance functions and the upcoming trend of autonomous driving, knowledge of the current state and changeable parameters of the vehicle becomes more and more important. One particularly significant parameter with regard to vehicle dynamics is the center of gravity (COG) height, which mainly accounts for its roll dynamics in combination with the mass of the vehicle. Thus, a highly increased vehicle mass and COG height might lead to rollover during cornering, which underlines the need for accurate knowledge of the load of the vehicle. Based on that, an improved rollover prevention could be implemented, for instance, by enhancing the electronic stability program (ESP) of the vehicle. Therefore, the main contribution of this work is the model-based online estimation of the additional load of the vehicle, comprising its COG position and mass. This is achieved by applying a joint extended Kalman Filter (EKF) for the simultaneous state and parameter estimation. Based on a nonlinear model with roll, pitch, and vertical dynamics, an accurate and reliable estimation is possible. One major novelty of this work is the consideration of air suspension systems on top of conventional steel spring suspension systems. Therefore, a nonlinear air spring model with sufficient complexity is proposed, making it suitable for real-time applications. Further, a system theoretical observability analysis allows for an online adaptation of the Kalman Filter weights in order to account for different driving situations. The proposed estimation method is tested and validated by considering a wide range of driving situations, considering distinct loading conditions on both a test track and public roads. The estimation accuracy lies within roughly 50 kg and 1.5 cm for the vehicle mass and COG height, respectively.
    • Download: (3.438Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Model-Based Estimation of Vehicle Center of Gravity Height and Load

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4291690
    Collections
    • Journal of Dynamic Systems, Measurement, and Control

    Show full item record

    contributor authorWittmer, Kelvin
    contributor authorSawodny, Oliver
    contributor authorHenning, Kay-Uwe
    date accessioned2023-08-16T18:14:36Z
    date available2023-08-16T18:14:36Z
    date copyright3/8/2023 12:00:00 AM
    date issued2023
    identifier issn0022-0434
    identifier otherds_145_05_051001.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4291690
    description abstractWith an increasing number of driver assistance functions and the upcoming trend of autonomous driving, knowledge of the current state and changeable parameters of the vehicle becomes more and more important. One particularly significant parameter with regard to vehicle dynamics is the center of gravity (COG) height, which mainly accounts for its roll dynamics in combination with the mass of the vehicle. Thus, a highly increased vehicle mass and COG height might lead to rollover during cornering, which underlines the need for accurate knowledge of the load of the vehicle. Based on that, an improved rollover prevention could be implemented, for instance, by enhancing the electronic stability program (ESP) of the vehicle. Therefore, the main contribution of this work is the model-based online estimation of the additional load of the vehicle, comprising its COG position and mass. This is achieved by applying a joint extended Kalman Filter (EKF) for the simultaneous state and parameter estimation. Based on a nonlinear model with roll, pitch, and vertical dynamics, an accurate and reliable estimation is possible. One major novelty of this work is the consideration of air suspension systems on top of conventional steel spring suspension systems. Therefore, a nonlinear air spring model with sufficient complexity is proposed, making it suitable for real-time applications. Further, a system theoretical observability analysis allows for an online adaptation of the Kalman Filter weights in order to account for different driving situations. The proposed estimation method is tested and validated by considering a wide range of driving situations, considering distinct loading conditions on both a test track and public roads. The estimation accuracy lies within roughly 50 kg and 1.5 cm for the vehicle mass and COG height, respectively.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleModel-Based Estimation of Vehicle Center of Gravity Height and Load
    typeJournal Paper
    journal volume145
    journal issue5
    journal titleJournal of Dynamic Systems, Measurement, and Control
    identifier doi10.1115/1.4056987
    journal fristpage51001-1
    journal lastpage51001-11
    page11
    treeJournal of Dynamic Systems, Measurement, and Control:;2023:;volume( 145 ):;issue: 005
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian