YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Dynamic Systems, Measurement, and Control
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Dynamic Systems, Measurement, and Control
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Data-Enabled Predictive Control for Building HVAC Systems

    Source: Journal of Dynamic Systems, Measurement, and Control:;2022:;volume( 144 ):;issue: 008::page 81001-1
    Author:
    Chinde
    ,
    Venkatesh;Lin
    ,
    Yashen;Ellis
    ,
    Matthew J.
    DOI: 10.1115/1.4054314
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: Model predictive control is widely used as a control technology for the computation of optimal control inputs of building heating, ventilating, and air conditioning (HVAC) systems. However, both the benefits and widespread adoption of model predictive control (MPC) are hindered by the effort of model creation, calibration, and accuracy of the predictions. In this paper, we apply the data-enabled predictive control (DeePC) algorithm for designing controls for building HVAC systems. The algorithm solely depends on input/output data from the system to predict future state trajectories without the need for system identification. The algorithm relies on the idea that a vector space of all input–output trajectories of a discrete-time linear time-invariant (LTI) system is spanned by time-shifts of a single measured trajectory, given the input signal is persistently exciting. Closed-loop simulations using EnergyPlus are performed to demonstrate the approach. The simulated building modeled in EnergyPlus is a modified commercial large office prototype building served by an air handling unit-variable air volume HVAC system. Temperature setpoints of zones are used as control variables to minimize the HVAC energy cost of the building considering a time-of-use electricity rate structure. Furthermore, sensitivity analysis is conducted to gain insights into the effect of parameter tuning on DeePC performance. Simulation results are used to illustrate the performance of the algorithm and compare the algorithm with model-based MPC and occupancy-based setpoint controller. Overall, DeePC achieves similar performance compared to MPC for lower engineering effort.
    • Download: (1.769Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Data-Enabled Predictive Control for Building HVAC Systems

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4287096
    Collections
    • Journal of Dynamic Systems, Measurement, and Control

    Show full item record

    contributor authorChinde
    contributor authorVenkatesh;Lin
    contributor authorYashen;Ellis
    contributor authorMatthew J.
    date accessioned2022-08-18T12:55:02Z
    date available2022-08-18T12:55:02Z
    date copyright5/6/2022 12:00:00 AM
    date issued2022
    identifier issn0022-0434
    identifier otherds_144_08_081001.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4287096
    description abstractModel predictive control is widely used as a control technology for the computation of optimal control inputs of building heating, ventilating, and air conditioning (HVAC) systems. However, both the benefits and widespread adoption of model predictive control (MPC) are hindered by the effort of model creation, calibration, and accuracy of the predictions. In this paper, we apply the data-enabled predictive control (DeePC) algorithm for designing controls for building HVAC systems. The algorithm solely depends on input/output data from the system to predict future state trajectories without the need for system identification. The algorithm relies on the idea that a vector space of all input–output trajectories of a discrete-time linear time-invariant (LTI) system is spanned by time-shifts of a single measured trajectory, given the input signal is persistently exciting. Closed-loop simulations using EnergyPlus are performed to demonstrate the approach. The simulated building modeled in EnergyPlus is a modified commercial large office prototype building served by an air handling unit-variable air volume HVAC system. Temperature setpoints of zones are used as control variables to minimize the HVAC energy cost of the building considering a time-of-use electricity rate structure. Furthermore, sensitivity analysis is conducted to gain insights into the effect of parameter tuning on DeePC performance. Simulation results are used to illustrate the performance of the algorithm and compare the algorithm with model-based MPC and occupancy-based setpoint controller. Overall, DeePC achieves similar performance compared to MPC for lower engineering effort.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleData-Enabled Predictive Control for Building HVAC Systems
    typeJournal Paper
    journal volume144
    journal issue8
    journal titleJournal of Dynamic Systems, Measurement, and Control
    identifier doi10.1115/1.4054314
    journal fristpage81001-1
    journal lastpage81001-11
    page11
    treeJournal of Dynamic Systems, Measurement, and Control:;2022:;volume( 144 ):;issue: 008
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian