YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Engineering for Gas Turbines and Power
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Engineering for Gas Turbines and Power
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Effect of Hydrogen on Steady-State and Transient Combustion Instability Characteristics

    Source: Journal of Engineering for Gas Turbines and Power:;2021:;volume( 143 ):;issue: 007::page 071023-1
    Author:
    Strollo, John
    ,
    Peluso, Stephen
    ,
    O'Connor, Jacqueline
    DOI: 10.1115/1.4049481
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: This paper examines the effects of steady-state and transient hydrogen enrichment on thermoacoustic instability in a model gas turbine combustor. Combustion instability, a feedback loop between flame heat release rate oscillations and combustor acoustics, is characterized in a swirl-stabilized flame operated at a range of hydrogen–natural gas fuel blends and heat rates. Measurements of combustor chamber pressure fluctuations and CH* chemiluminescence imaging are used to characterize instability at a range of operating conditions. Steady-state tests show that both mixture heat rate and hydrogen content affect system stability. At a given heat rate, higher levels of hydrogen result in unstable combustion. As heat rate increases, instability occurs at lower concentrations of hydrogen in the fuel. Transient operation was tested in two directions—instability onset and decay—and two hydrogen-addition times—a short time of 1 ms and a longer time of 4 s. Results show that instability onset processes, through the transient addition of hydrogen, are highly repeatable regardless of the timescale of hydrogen addition. Certain instability decay processes are less repeatable, resulting in cases that do not fully transition from unstable to stable combustion despite similar changes in hydrogen fuel flow rate. Flame behavior before, during, and after the transient is characterized using high-speed CH* chemiluminescence imaging. Analysis of the high-speed images shows changes in flame stabilization and dynamics during the onset and decay processes. The results of this study can have implications for systems that experience variations in fuel composition, particularly in light of growing interest in hydrogen as a renewable fuel.
    • Download: (5.552Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Effect of Hydrogen on Steady-State and Transient Combustion Instability Characteristics

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4278152
    Collections
    • Journal of Engineering for Gas Turbines and Power

    Show full item record

    contributor authorStrollo, John
    contributor authorPeluso, Stephen
    contributor authorO'Connor, Jacqueline
    date accessioned2022-02-06T05:29:45Z
    date available2022-02-06T05:29:45Z
    date copyright3/31/2021 12:00:00 AM
    date issued2021
    identifier issn0742-4795
    identifier othergtp_143_07_071023.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4278152
    description abstractThis paper examines the effects of steady-state and transient hydrogen enrichment on thermoacoustic instability in a model gas turbine combustor. Combustion instability, a feedback loop between flame heat release rate oscillations and combustor acoustics, is characterized in a swirl-stabilized flame operated at a range of hydrogen–natural gas fuel blends and heat rates. Measurements of combustor chamber pressure fluctuations and CH* chemiluminescence imaging are used to characterize instability at a range of operating conditions. Steady-state tests show that both mixture heat rate and hydrogen content affect system stability. At a given heat rate, higher levels of hydrogen result in unstable combustion. As heat rate increases, instability occurs at lower concentrations of hydrogen in the fuel. Transient operation was tested in two directions—instability onset and decay—and two hydrogen-addition times—a short time of 1 ms and a longer time of 4 s. Results show that instability onset processes, through the transient addition of hydrogen, are highly repeatable regardless of the timescale of hydrogen addition. Certain instability decay processes are less repeatable, resulting in cases that do not fully transition from unstable to stable combustion despite similar changes in hydrogen fuel flow rate. Flame behavior before, during, and after the transient is characterized using high-speed CH* chemiluminescence imaging. Analysis of the high-speed images shows changes in flame stabilization and dynamics during the onset and decay processes. The results of this study can have implications for systems that experience variations in fuel composition, particularly in light of growing interest in hydrogen as a renewable fuel.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleEffect of Hydrogen on Steady-State and Transient Combustion Instability Characteristics
    typeJournal Paper
    journal volume143
    journal issue7
    journal titleJournal of Engineering for Gas Turbines and Power
    identifier doi10.1115/1.4049481
    journal fristpage071023-1
    journal lastpage071023-12
    page12
    treeJournal of Engineering for Gas Turbines and Power:;2021:;volume( 143 ):;issue: 007
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian