YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Electronic Packaging
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Electronic Packaging
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Experimental Study and Mitigation of Pressure Drop Oscillation Using Active Control

    Source: Journal of Electronic Packaging:;2021:;volume( 143 ):;issue: 004::page 041102-1
    Author:
    Jin, Qi
    ,
    Wen, John T.
    ,
    Narayanan, Shankar
    DOI: 10.1115/1.4051942
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: Flow boiling in microchannel evaporators is widely recognized and promising for its compact structure, lower coolant usage, high heat transfer coefficient, ability to provide higher heat fluxes, and better temperature uniformity than single-phase liquid cooling. However, critical heat flux (CHF), local dry-outs, and flow instabilities can be significant roadblocks for practical implementation. Flow instabilities, like pressure drop oscillation, could lead to nonuniform wall temperature distribution, flow reversal, and local dryout, which can be detrimental to system performance. We conducted an experimental study of a vapor compression cycle incorporating a microchannel evaporator to investigate the role of evaporator design and various system parameters on the overall performance. These parameters include the expansion valve setting, the accumulator heat load, and the evaporator heat load. While the evaporator design, the testbed, and system parameters affect the system response in unique ways, flow instability can be explained based on the overall pressure drop occurring in the system and how it varies as a function of these factors. Based on the understanding gained from this experimental study, a dynamic control strategy was developed to stabilize the system facing transient heat loads. The system can successfully address transient evaporator heat loads with feedforward control, which would otherwise lead to pressure drop oscillation. We believe this study can be helpful in further development of active control techniques to achieve multiple objectives of maintaining fixed evaporator temperature, allowing higher cooling rates, avoiding CHF, and suppressing flow instabilities, even in the presence of transient heat loads.
    • Download: (1.958Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Experimental Study and Mitigation of Pressure Drop Oscillation Using Active Control

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4278067
    Collections
    • Journal of Electronic Packaging

    Show full item record

    contributor authorJin, Qi
    contributor authorWen, John T.
    contributor authorNarayanan, Shankar
    date accessioned2022-02-06T05:27:28Z
    date available2022-02-06T05:27:28Z
    date copyright8/20/2021 12:00:00 AM
    date issued2021
    identifier issn1043-7398
    identifier otherep_143_04_041102.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4278067
    description abstractFlow boiling in microchannel evaporators is widely recognized and promising for its compact structure, lower coolant usage, high heat transfer coefficient, ability to provide higher heat fluxes, and better temperature uniformity than single-phase liquid cooling. However, critical heat flux (CHF), local dry-outs, and flow instabilities can be significant roadblocks for practical implementation. Flow instabilities, like pressure drop oscillation, could lead to nonuniform wall temperature distribution, flow reversal, and local dryout, which can be detrimental to system performance. We conducted an experimental study of a vapor compression cycle incorporating a microchannel evaporator to investigate the role of evaporator design and various system parameters on the overall performance. These parameters include the expansion valve setting, the accumulator heat load, and the evaporator heat load. While the evaporator design, the testbed, and system parameters affect the system response in unique ways, flow instability can be explained based on the overall pressure drop occurring in the system and how it varies as a function of these factors. Based on the understanding gained from this experimental study, a dynamic control strategy was developed to stabilize the system facing transient heat loads. The system can successfully address transient evaporator heat loads with feedforward control, which would otherwise lead to pressure drop oscillation. We believe this study can be helpful in further development of active control techniques to achieve multiple objectives of maintaining fixed evaporator temperature, allowing higher cooling rates, avoiding CHF, and suppressing flow instabilities, even in the presence of transient heat loads.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleExperimental Study and Mitigation of Pressure Drop Oscillation Using Active Control
    typeJournal Paper
    journal volume143
    journal issue4
    journal titleJournal of Electronic Packaging
    identifier doi10.1115/1.4051942
    journal fristpage041102-1
    journal lastpage041102-8
    page8
    treeJournal of Electronic Packaging:;2021:;volume( 143 ):;issue: 004
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian