YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Dynamic Systems, Measurement, and Control
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Dynamic Systems, Measurement, and Control
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Control of Uniflagellar Soft Robots at Low Reynolds Number Using Buckling Instability

    Source: Journal of Dynamic Systems, Measurement, and Control:;2021:;volume( 143 ):;issue: 006::page 061004-1
    Author:
    Forghani, Mojtaba
    ,
    Huang, Weicheng
    ,
    Jawed, M. Khalid
    DOI: 10.1115/1.4049548
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: In this paper, we analyze the inverse dynamics and control of a bacteria-inspired uniflagellar robot in a fluid medium at low Reynolds number. Inspired by the mechanism behind the locomotion of flagellated bacteria, we consider a robot comprising a flagellum—a flexible helical filament—connected to a spherical head. The flagellum rotates about the head at a controlled angular velocity and generates a propulsive force that moves the robot forward. When the angular velocity exceeds a threshold value, the hydrodynamic force exerted by the fluid can cause the soft flagellum to buckle, characterized by a dramatic change in its shape. In this computational study, a fluid–structure interaction model that combines Discrete Elastic Rods algorithm with Lighthill's Slender Body Theory is employed to simulate the locomotion and deformation of the robot. We demonstrate that the robot can follow a prescribed path in three-dimensional space by exploiting buckling of the flagellum. The control scheme involves only a single (binary) scalar input—the angular velocity of the flagellum. By triggering the buckling instability at the right moment, the robot can follow the path in three-dimensional space. We also show that the complexity of the dynamics of the helical filament can be captured using a deep neural network, from which we identify the input–output functional relationship between the control input and the trajectory of the robot. Furthermore, our study underscores the potential role of buckling in the locomotion of natural bacteria.
    • Download: (1.160Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Control of Uniflagellar Soft Robots at Low Reynolds Number Using Buckling Instability

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4277113
    Collections
    • Journal of Dynamic Systems, Measurement, and Control

    Show full item record

    contributor authorForghani, Mojtaba
    contributor authorHuang, Weicheng
    contributor authorJawed, M. Khalid
    date accessioned2022-02-05T22:12:07Z
    date available2022-02-05T22:12:07Z
    date copyright2/1/2021 12:00:00 AM
    date issued2021
    identifier issn0022-0434
    identifier otherds_143_06_061004.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4277113
    description abstractIn this paper, we analyze the inverse dynamics and control of a bacteria-inspired uniflagellar robot in a fluid medium at low Reynolds number. Inspired by the mechanism behind the locomotion of flagellated bacteria, we consider a robot comprising a flagellum—a flexible helical filament—connected to a spherical head. The flagellum rotates about the head at a controlled angular velocity and generates a propulsive force that moves the robot forward. When the angular velocity exceeds a threshold value, the hydrodynamic force exerted by the fluid can cause the soft flagellum to buckle, characterized by a dramatic change in its shape. In this computational study, a fluid–structure interaction model that combines Discrete Elastic Rods algorithm with Lighthill's Slender Body Theory is employed to simulate the locomotion and deformation of the robot. We demonstrate that the robot can follow a prescribed path in three-dimensional space by exploiting buckling of the flagellum. The control scheme involves only a single (binary) scalar input—the angular velocity of the flagellum. By triggering the buckling instability at the right moment, the robot can follow the path in three-dimensional space. We also show that the complexity of the dynamics of the helical filament can be captured using a deep neural network, from which we identify the input–output functional relationship between the control input and the trajectory of the robot. Furthermore, our study underscores the potential role of buckling in the locomotion of natural bacteria.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleControl of Uniflagellar Soft Robots at Low Reynolds Number Using Buckling Instability
    typeJournal Paper
    journal volume143
    journal issue6
    journal titleJournal of Dynamic Systems, Measurement, and Control
    identifier doi10.1115/1.4049548
    journal fristpage061004-1
    journal lastpage061004-10
    page10
    treeJournal of Dynamic Systems, Measurement, and Control:;2021:;volume( 143 ):;issue: 006
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian