YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Applied Mechanics
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Applied Mechanics
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    A Method to Determine Material Length Scale Parameters in Elastic Strain Gradient Theory

    Source: Journal of Applied Mechanics:;2020:;volume( 087 ):;issue: 003::page 031010-1
    Author:
    Song, Jingru
    ,
    Wei, Yueguang
    DOI: 10.1115/1.4045523
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: With specimen size decrease for advanced structural materials, the measured mechanics behaviors display the strong size effects. In order to characterize the size effects, several higher-order theories have been presented in the past several decades, such as the strain gradient theories and the micro-polar theories, etc. However, in each higher-order theory, there are several length scale parameters included, which are usually taken as the material parameters and are determined by using the corresponding theoretical predictions to fit experimental results. Since such kind of experimental approaches needs high techniques, it is very difficult to be performed; therefore, the obtained experimental results are very few until now; in addition, the physical meanings of the parameters still need to be investigated. In the present research, an equivalent linkage method is used to simply determine the elastic length parameters appeared in the elastic strain gradient theory for a series of typical metal materials. We use both the elastic strain gradient theory and the higher-order Cauchy-Born rule to model the materials mechanics behaviors by means of a spherical expanding model and then make a linkage for both kinds of results according to the equivalence of strain energy densities. The values of the materials length parameters are obtained for a series of typical metal systems, such as the face-centered cubic (FCC), body-centered cubic (BCC), and hexagonal close-packed (HCP) metals.
    • Download: (643.5Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      A Method to Determine Material Length Scale Parameters in Elastic Strain Gradient Theory

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4275813
    Collections
    • Journal of Applied Mechanics

    Show full item record

    contributor authorSong, Jingru
    contributor authorWei, Yueguang
    date accessioned2022-02-04T22:58:12Z
    date available2022-02-04T22:58:12Z
    date copyright3/1/2020 12:00:00 AM
    date issued2020
    identifier issn0021-8936
    identifier otherjam_87_3_031010.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4275813
    description abstractWith specimen size decrease for advanced structural materials, the measured mechanics behaviors display the strong size effects. In order to characterize the size effects, several higher-order theories have been presented in the past several decades, such as the strain gradient theories and the micro-polar theories, etc. However, in each higher-order theory, there are several length scale parameters included, which are usually taken as the material parameters and are determined by using the corresponding theoretical predictions to fit experimental results. Since such kind of experimental approaches needs high techniques, it is very difficult to be performed; therefore, the obtained experimental results are very few until now; in addition, the physical meanings of the parameters still need to be investigated. In the present research, an equivalent linkage method is used to simply determine the elastic length parameters appeared in the elastic strain gradient theory for a series of typical metal materials. We use both the elastic strain gradient theory and the higher-order Cauchy-Born rule to model the materials mechanics behaviors by means of a spherical expanding model and then make a linkage for both kinds of results according to the equivalence of strain energy densities. The values of the materials length parameters are obtained for a series of typical metal systems, such as the face-centered cubic (FCC), body-centered cubic (BCC), and hexagonal close-packed (HCP) metals.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleA Method to Determine Material Length Scale Parameters in Elastic Strain Gradient Theory
    typeJournal Paper
    journal volume87
    journal issue3
    journal titleJournal of Applied Mechanics
    identifier doi10.1115/1.4045523
    journal fristpage031010-1
    journal lastpage031010-7
    page7
    treeJournal of Applied Mechanics:;2020:;volume( 087 ):;issue: 003
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian