YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Electronic Packaging
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Electronic Packaging
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Additively Printed Multilayer Substrate Using Aerosol-Jet Technique

    Source: Journal of Electronic Packaging:;2020:;volume( 142 ):;issue: 004::page 041110-1
    Author:
    Lall, Pradeep
    ,
    Goyal, Kartik
    ,
    Kothari, Nakul
    ,
    Leever, Benjamin
    ,
    Miller, Scott
    DOI: 10.1115/1.4047473
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: Printing technologies, such as aerosol-jet, open possibilities of miniaturizing interconnects and designing circuits on nonplanar surfaces. Aerosol-jet is a direct-printing technique that provides an alternative manufacturing option to traditional subtractive methods that entail lithography or etching. Additionally, the aerosol-jet technique allows the circuits fabrication using noncontact method. Wide impact areas range from healthcare to wearables to future automotive applications. The aerosol-jet printer from Optomec utilized in this study consists of two types of atomizers, depending on ink viscosity. The ultrasonic atomizer, supports ink with a viscosity range of 1–5 cP, and the pneumatic atomizer that has a larger range of 1–1000 cP. This paper focuses on utilizing the aerosol-jet technique, using both atomizers to develop process parameters, in order to successfully print bimaterial, multilayer circuitry. The insulating material between two conductive lines used in the paper is of very high viscosity of 350 cP, which is suitable for the pneumatic atomizer and silver nanoparticle ink with comparatively low viscosity of 30 cP for the ultrasonic atomizer as a conductive ink. This paper also presents a statistical modeling approach that predicts line attributes, including microvia-diameter, before starting the print process, enabling us to pre-adjust the dimensions in computer-aided design for the desired output. Process parameters can obtain a fine print with satisfactory electrical properties, which develops improved dimensional accuracy. The importance of precleaning the substrate in addition to the printing process efficiency gaged as a function of process capability index and process capability ratio is also presented.
    • Download: (1.663Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Additively Printed Multilayer Substrate Using Aerosol-Jet Technique

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4274576
    Collections
    • Journal of Electronic Packaging

    Show full item record

    contributor authorLall, Pradeep
    contributor authorGoyal, Kartik
    contributor authorKothari, Nakul
    contributor authorLeever, Benjamin
    contributor authorMiller, Scott
    date accessioned2022-02-04T21:56:44Z
    date available2022-02-04T21:56:44Z
    date copyright6/29/2020 12:00:00 AM
    date issued2020
    identifier issn1043-7398
    identifier otherep_142_04_040801.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4274576
    description abstractPrinting technologies, such as aerosol-jet, open possibilities of miniaturizing interconnects and designing circuits on nonplanar surfaces. Aerosol-jet is a direct-printing technique that provides an alternative manufacturing option to traditional subtractive methods that entail lithography or etching. Additionally, the aerosol-jet technique allows the circuits fabrication using noncontact method. Wide impact areas range from healthcare to wearables to future automotive applications. The aerosol-jet printer from Optomec utilized in this study consists of two types of atomizers, depending on ink viscosity. The ultrasonic atomizer, supports ink with a viscosity range of 1–5 cP, and the pneumatic atomizer that has a larger range of 1–1000 cP. This paper focuses on utilizing the aerosol-jet technique, using both atomizers to develop process parameters, in order to successfully print bimaterial, multilayer circuitry. The insulating material between two conductive lines used in the paper is of very high viscosity of 350 cP, which is suitable for the pneumatic atomizer and silver nanoparticle ink with comparatively low viscosity of 30 cP for the ultrasonic atomizer as a conductive ink. This paper also presents a statistical modeling approach that predicts line attributes, including microvia-diameter, before starting the print process, enabling us to pre-adjust the dimensions in computer-aided design for the desired output. Process parameters can obtain a fine print with satisfactory electrical properties, which develops improved dimensional accuracy. The importance of precleaning the substrate in addition to the printing process efficiency gaged as a function of process capability index and process capability ratio is also presented.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleAdditively Printed Multilayer Substrate Using Aerosol-Jet Technique
    typeJournal Paper
    journal volume142
    journal issue4
    journal titleJournal of Electronic Packaging
    identifier doi10.1115/1.4047473
    journal fristpage041110-1
    journal lastpage041110-10
    page10
    treeJournal of Electronic Packaging:;2020:;volume( 142 ):;issue: 004
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian