| contributor author | Khakpour Nejadkhaki, Hamid | |
| contributor author | Hall, John F. | |
| date accessioned | 2022-02-04T21:55:39Z | |
| date available | 2022-02-04T21:55:39Z | |
| date copyright | 5/25/2020 12:00:00 AM | |
| date issued | 2020 | |
| identifier issn | 0022-0434 | |
| identifier other | ds_142_10_101001.pdf | |
| identifier uri | http://yetl.yabesh.ir/yetl1/handle/yetl/4274546 | |
| description abstract | A control framework and integrative design method for an adaptive wind turbine blade is presented. The blade is adapted by actively transforming the twist angle distribution (TAD) along the blade. This can alleviate fatigue loads and improve wind capture. In this paper, we focus on wind capture. The proposed design concept consists of a rigid spar that is surrounded by a series of flexible blade sections. Each section has two zones of stiffness. The sections are actuated at each end to deform the TAD. A quasi-static control technique is proposed for the TAD. The controller sets the position of the blade actuators that shape the TAD during steady-state operation. A design procedure is used to define the required TAD as a function of the wind speed. This is based on an optimization procedure that minimizes the deviation between the actual TAD and that found in the aerodynamic design. The design inputs for this optimization problem include the stiffness for each zone of the section, and the actuator locations along the blade. Given the optimal TAD at each wind speed, the free position of the blade is established using a dynamic programming technique. The position is selected based on minimal actuation energy according to wind conditions at any installation site. The proposed framework is demonstrated using a National Renewable Energy Laboratory (NREL) certified wind turbine model with recorded wind data. An increase in efficiency of 3.8% with only a deviation of 0.34% from the aerodynamic TAD is observed. | |
| publisher | The American Society of Mechanical Engineers (ASME) | |
| title | Control Framework and Integrative Design Method for an Adaptive Wind Turbine Blade | |
| type | Journal Paper | |
| journal volume | 142 | |
| journal issue | 10 | |
| journal title | Journal of Dynamic Systems, Measurement, and Control | |
| identifier doi | 10.1115/1.4047098 | |
| journal fristpage | 0101001-1 | |
| journal lastpage | 0101001-11 | |
| page | 11 | |
| tree | Journal of Dynamic Systems, Measurement, and Control:;2020:;volume( 142 ):;issue: 010 | |
| contenttype | Fulltext | |