Hydrodynamic Bulge Testing: Materials Characterization Without Measuring DeformationSource: Journal of Applied Mechanics:;2020:;volume( 087 ):;issue: 005DOI: 10.1115/1.4046297Publisher: The American Society of Mechanical Engineers (ASME)
Abstract: Characterizing the elastic properties of soft materials through bulge testing relies on accurate measurement of deformation, which is experimentally challenging. To avoid measuring deformation, we propose a hydrodynamic bulge test for characterizing the material properties of thick, pre-stressed elastic sheets via their fluid–structure interaction with a steady viscous fluid flow. Specifically, the hydrodynamic bulge test relies on a pressure drop measurement across a rectangular microchannel with a deformable top wall. We develop a mathematical model using first-order shear deformation theory of plates with stretching and the lubrication approximation for the Newtonian fluid flow. Specifically, a relationship is derived between the imposed flowrate and the total pressure drop. Then, this relationship is inverted numerically to yield estimates of the Young’s modulus (given the Poisson ratio) if the pressure drop is measured (given the steady flowrate). Direct numerical simulations of two-way-coupled fluid–structure interaction are carried out in ansys to determine the cross-sectional membrane deformation and the hydrodynamic pressure distribution. Taking the simulations as “ground truth,” a hydrodynamic bulge test is performed using the simulation data to ascertain the accuracy and the validity of the proposed methodology for estimating material properties. An error propagation analysis is performed via Monte Carlo simulation to characterize the susceptibility of the hydrodynamic bulge test estimates to noise. We find that, while a hydrodynamic bulge test is less accurate in characterizing material properties, it is less susceptible to noise, in the input (measured) variable, than a hydrostatic bulge test.
|
Collections
Show full item record
| contributor author | Anand, Vishal | |
| contributor author | Muchandimath, Sanjan C. | |
| contributor author | Christov, Ivan C. | |
| date accessioned | 2022-02-04T14:48:39Z | |
| date available | 2022-02-04T14:48:39Z | |
| date copyright | 2020/03/09/ | |
| date issued | 2020 | |
| identifier issn | 0021-8936 | |
| identifier other | jam_87_5_051012.pdf | |
| identifier uri | http://yetl.yabesh.ir/yetl1/handle/yetl/4274421 | |
| description abstract | Characterizing the elastic properties of soft materials through bulge testing relies on accurate measurement of deformation, which is experimentally challenging. To avoid measuring deformation, we propose a hydrodynamic bulge test for characterizing the material properties of thick, pre-stressed elastic sheets via their fluid–structure interaction with a steady viscous fluid flow. Specifically, the hydrodynamic bulge test relies on a pressure drop measurement across a rectangular microchannel with a deformable top wall. We develop a mathematical model using first-order shear deformation theory of plates with stretching and the lubrication approximation for the Newtonian fluid flow. Specifically, a relationship is derived between the imposed flowrate and the total pressure drop. Then, this relationship is inverted numerically to yield estimates of the Young’s modulus (given the Poisson ratio) if the pressure drop is measured (given the steady flowrate). Direct numerical simulations of two-way-coupled fluid–structure interaction are carried out in ansys to determine the cross-sectional membrane deformation and the hydrodynamic pressure distribution. Taking the simulations as “ground truth,” a hydrodynamic bulge test is performed using the simulation data to ascertain the accuracy and the validity of the proposed methodology for estimating material properties. An error propagation analysis is performed via Monte Carlo simulation to characterize the susceptibility of the hydrodynamic bulge test estimates to noise. We find that, while a hydrodynamic bulge test is less accurate in characterizing material properties, it is less susceptible to noise, in the input (measured) variable, than a hydrostatic bulge test. | |
| publisher | The American Society of Mechanical Engineers (ASME) | |
| title | Hydrodynamic Bulge Testing: Materials Characterization Without Measuring Deformation | |
| type | Journal Paper | |
| journal volume | 87 | |
| journal issue | 5 | |
| journal title | Journal of Applied Mechanics | |
| identifier doi | 10.1115/1.4046297 | |
| page | 51012 | |
| tree | Journal of Applied Mechanics:;2020:;volume( 087 ):;issue: 005 | |
| contenttype | Fulltext |