Show simple item record

contributor authorAnand, Vishal
contributor authorMuchandimath, Sanjan C.
contributor authorChristov, Ivan C.
date accessioned2022-02-04T14:48:39Z
date available2022-02-04T14:48:39Z
date copyright2020/03/09/
date issued2020
identifier issn0021-8936
identifier otherjam_87_5_051012.pdf
identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4274421
description abstractCharacterizing the elastic properties of soft materials through bulge testing relies on accurate measurement of deformation, which is experimentally challenging. To avoid measuring deformation, we propose a hydrodynamic bulge test for characterizing the material properties of thick, pre-stressed elastic sheets via their fluid–structure interaction with a steady viscous fluid flow. Specifically, the hydrodynamic bulge test relies on a pressure drop measurement across a rectangular microchannel with a deformable top wall. We develop a mathematical model using first-order shear deformation theory of plates with stretching and the lubrication approximation for the Newtonian fluid flow. Specifically, a relationship is derived between the imposed flowrate and the total pressure drop. Then, this relationship is inverted numerically to yield estimates of the Young’s modulus (given the Poisson ratio) if the pressure drop is measured (given the steady flowrate). Direct numerical simulations of two-way-coupled fluid–structure interaction are carried out in ansys to determine the cross-sectional membrane deformation and the hydrodynamic pressure distribution. Taking the simulations as “ground truth,” a hydrodynamic bulge test is performed using the simulation data to ascertain the accuracy and the validity of the proposed methodology for estimating material properties. An error propagation analysis is performed via Monte Carlo simulation to characterize the susceptibility of the hydrodynamic bulge test estimates to noise. We find that, while a hydrodynamic bulge test is less accurate in characterizing material properties, it is less susceptible to noise, in the input (measured) variable, than a hydrostatic bulge test.
publisherThe American Society of Mechanical Engineers (ASME)
titleHydrodynamic Bulge Testing: Materials Characterization Without Measuring Deformation
typeJournal Paper
journal volume87
journal issue5
journal titleJournal of Applied Mechanics
identifier doi10.1115/1.4046297
page51012
treeJournal of Applied Mechanics:;2020:;volume( 087 ):;issue: 005
contenttypeFulltext


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record