YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Electronic Packaging
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Electronic Packaging
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Investigation of Elevated Temperature Mechanical Properties of Intermetallic Compounds in the Cu–Sn System Using Nanoindentation

    Source: Journal of Electronic Packaging:;2020:;volume( 142 ):;issue: 002
    Author:
    Yin, Zuozhu
    ,
    Sun, Fenglian
    ,
    Guo, Mengjiao
    DOI: 10.1115/1.4045980
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: In electronic packaging, most researchers are mainly focused on the mechanical properties of Cu–Sn intermetallic compounds (IMCs) at room temperature; few studies have looked into the relationship between hardness, elastic modulus, and plasticity of IMCs and elevated temperature. The hardness, elastic modulus, and plasticity of Cu6Sn5 and Cu3Sn at 25–200 °C are investigated by the nanoindentation method. The results show that the hardnesses of Cu6Sn5 and Cu3Sn obey linear attenuation law with elevated temperature. The hardness of Cu6Sn5 is more sensitive to temperature than that of Cu3Sn. This is due to the fact that the melting point of Cu6Sn5 (415 °C) is lower than that of Cu3Sn (670 °C), Cu6Sn5 has a lower normalization temperature than that of Cu3Sn. The elastic modulus of Cu6Sn5 and Cu3Sn and temperature have a parabolic law at 25–200 °C. The elastic modulus of Cu6Sn5 is more sensitive to temperature. This is attributed to the fact that the lattice structure of Cu6Sn5 is changed from hexagonal lattice to monoclinic lattice, causing its volume to expand, thereby making it more sensitive to temperature. The plasticity factors of Cu6Sn5 and Cu3Sn meet the polynomial relationship with elevated temperature. The plasticity factors of Cu6Sn5 and Cu3Sn increase with increasing temperature, which will reduce the resistance to plastic deformation. This is attributed to the fact that the vacancy generated into the material is conducive to the dislocation movement, the dislocation movement will be more active so that the plasticity factors of Cu6Sn5 and Cu3Sn gradually increase.
    • Download: (1.105Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Investigation of Elevated Temperature Mechanical Properties of Intermetallic Compounds in the Cu–Sn System Using Nanoindentation

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4273497
    Collections
    • Journal of Electronic Packaging

    Show full item record

    contributor authorYin, Zuozhu
    contributor authorSun, Fenglian
    contributor authorGuo, Mengjiao
    date accessioned2022-02-04T14:21:27Z
    date available2022-02-04T14:21:27Z
    date copyright2020/02/04/
    date issued2020
    identifier issn1043-7398
    identifier otherep_142_02_021004.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4273497
    description abstractIn electronic packaging, most researchers are mainly focused on the mechanical properties of Cu–Sn intermetallic compounds (IMCs) at room temperature; few studies have looked into the relationship between hardness, elastic modulus, and plasticity of IMCs and elevated temperature. The hardness, elastic modulus, and plasticity of Cu6Sn5 and Cu3Sn at 25–200 °C are investigated by the nanoindentation method. The results show that the hardnesses of Cu6Sn5 and Cu3Sn obey linear attenuation law with elevated temperature. The hardness of Cu6Sn5 is more sensitive to temperature than that of Cu3Sn. This is due to the fact that the melting point of Cu6Sn5 (415 °C) is lower than that of Cu3Sn (670 °C), Cu6Sn5 has a lower normalization temperature than that of Cu3Sn. The elastic modulus of Cu6Sn5 and Cu3Sn and temperature have a parabolic law at 25–200 °C. The elastic modulus of Cu6Sn5 is more sensitive to temperature. This is attributed to the fact that the lattice structure of Cu6Sn5 is changed from hexagonal lattice to monoclinic lattice, causing its volume to expand, thereby making it more sensitive to temperature. The plasticity factors of Cu6Sn5 and Cu3Sn meet the polynomial relationship with elevated temperature. The plasticity factors of Cu6Sn5 and Cu3Sn increase with increasing temperature, which will reduce the resistance to plastic deformation. This is attributed to the fact that the vacancy generated into the material is conducive to the dislocation movement, the dislocation movement will be more active so that the plasticity factors of Cu6Sn5 and Cu3Sn gradually increase.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleInvestigation of Elevated Temperature Mechanical Properties of Intermetallic Compounds in the Cu–Sn System Using Nanoindentation
    typeJournal Paper
    journal volume142
    journal issue2
    journal titleJournal of Electronic Packaging
    identifier doi10.1115/1.4045980
    page21004
    treeJournal of Electronic Packaging:;2020:;volume( 142 ):;issue: 002
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian