YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Dynamic Systems, Measurement, and Control
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Dynamic Systems, Measurement, and Control
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Comparison of Artificial Neural Network and Fuzzy Logic Approaches for the Prediction of In-Cylinder Pressure in a Spark Ignition Engine

    Source: Journal of Dynamic Systems, Measurement, and Control:;2020:;volume( 142 ):;issue: 009
    Author:
    Solmaz, Özgür
    ,
    Gürbüz, Habib
    ,
    Karacor, Mevlüt
    DOI: 10.1115/1.4047014
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: In first stage, a machine learning (ML) was performed to predict in-cylinder pressure using both fuzzy logic (FL) and artificial neural networks (ANN) depending on the results of experimental studies in a spark ignition (SI) engine. In the ML phase, the experimental in-cylinder pressure data of SI engine was used. SI engine was operated at stoichiometric air–fuel mixture (φ = 1.0) at 1200, 1400, and 1600 rpm engine speeds. Six different ignition timings, ranging from 15 to 45 °CA, were used for each engine speed. Correlations (R2) between data from in-cylinder pressure obtained via FL and ANN models and data form experimental in-cylinder pressure were determined. R2 values over 0.995 were obtained at an ML stage of ANN model for all test conditions of the engine. However, R2 values were remained between range of 0.820–0.949 with the FL model for different engine speeds and ignition timings. In the second stage, in-cylinder pressure prediction was performed by using an ANN model for engine operating conditions where no experimental results were obtained. Furthermore, indicated mean effective pressure (IMEP) values were calculated by predicting in-cylinder pressure data for different engine operation conditions, and then compared with experimental IMEP values. The results show that the in-cylinder pressure and IMEP results estimated with the trained ANN model are fairly close to the experimental results. Moreover, it was found that using the trained ANN model, the ignition timing corresponding to the maximum brake torque (MBT) used in the engine management systems and engine studies could be determined with high accuracy.
    • Download: (3.921Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Comparison of Artificial Neural Network and Fuzzy Logic Approaches for the Prediction of In-Cylinder Pressure in a Spark Ignition Engine

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4273490
    Collections
    • Journal of Dynamic Systems, Measurement, and Control

    Show full item record

    contributor authorSolmaz, Özgür
    contributor authorGürbüz, Habib
    contributor authorKaracor, Mevlüt
    date accessioned2022-02-04T14:21:11Z
    date available2022-02-04T14:21:11Z
    date copyright2020/05/11/
    date issued2020
    identifier issn0022-0434
    identifier otherds_142_09_091005.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4273490
    description abstractIn first stage, a machine learning (ML) was performed to predict in-cylinder pressure using both fuzzy logic (FL) and artificial neural networks (ANN) depending on the results of experimental studies in a spark ignition (SI) engine. In the ML phase, the experimental in-cylinder pressure data of SI engine was used. SI engine was operated at stoichiometric air–fuel mixture (φ = 1.0) at 1200, 1400, and 1600 rpm engine speeds. Six different ignition timings, ranging from 15 to 45 °CA, were used for each engine speed. Correlations (R2) between data from in-cylinder pressure obtained via FL and ANN models and data form experimental in-cylinder pressure were determined. R2 values over 0.995 were obtained at an ML stage of ANN model for all test conditions of the engine. However, R2 values were remained between range of 0.820–0.949 with the FL model for different engine speeds and ignition timings. In the second stage, in-cylinder pressure prediction was performed by using an ANN model for engine operating conditions where no experimental results were obtained. Furthermore, indicated mean effective pressure (IMEP) values were calculated by predicting in-cylinder pressure data for different engine operation conditions, and then compared with experimental IMEP values. The results show that the in-cylinder pressure and IMEP results estimated with the trained ANN model are fairly close to the experimental results. Moreover, it was found that using the trained ANN model, the ignition timing corresponding to the maximum brake torque (MBT) used in the engine management systems and engine studies could be determined with high accuracy.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleComparison of Artificial Neural Network and Fuzzy Logic Approaches for the Prediction of In-Cylinder Pressure in a Spark Ignition Engine
    typeJournal Paper
    journal volume142
    journal issue9
    journal titleJournal of Dynamic Systems, Measurement, and Control
    identifier doi10.1115/1.4047014
    page91005
    treeJournal of Dynamic Systems, Measurement, and Control:;2020:;volume( 142 ):;issue: 009
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian