YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Electronic Packaging
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Electronic Packaging
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Interconnect Fatigue Failure Parameter Isolation for Power Device Reliability Prediction in Alternative Accelerated Mechanical Cycling Test

    Source: Journal of Electronic Packaging:;2019:;volume( 141 ):;issue: 003::page 31011
    Author:
    Montazeri, Mahsa
    ,
    Marbut, Cody J.
    ,
    Huitink, David
    DOI: 10.1115/1.4043480
    Publisher: American Society of Mechanical Engineers (ASME)
    Abstract: In this work, a rapid and low-cost accelerated reliability test methodology which was designed to simulate mechanical stresses induced in flip–chip bonded devices during the thermal cycling reliability test under isothermal conditions, is introduced and demonstrated using power device analogous test chips. By stressing these devices in a controlled environment, mechanical stresses become decoupled from the design and temperature, such that useful lifetimes can be predictable. Mechanical shear stress was cyclically applied directly to device relevant, flip–chip solder interconnects while monitoring for failure. Herein, finite element analysis (FEA) is used to extract various damage metrics of different solder materials, including PbSn37/63, SAC305, and nanosilver, in both thermal operation and the introduced alternative mechanical testing conditions. Plastic work density and strain are calculated in the critical solder interconnects as factors that indicate the amount of the damage accumulation per cycle during the mechanical cycling, thermal cycling, and power cycling tests. The number of cycles to failure for each test was calculated using the fatigue life model developed by Darveaux for eutectic PbSn solder, while for SAC305 Syed's method was used, and for nanosilver, the Knoerr et al. equations are applied. The effects of environmental temperature and shearing force frequency were studied for the mechanical cycling reliability test, where a modified Norris–Landzberg equation for mechanical cycling tests was explored using the simulation results. Finally, comparing the mechanical cycling with the equivalent thermal cycling and power cycling demonstrated a significant reduction in required test duration to achieve a reliability estimation.
    • Download: (2.547Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Interconnect Fatigue Failure Parameter Isolation for Power Device Reliability Prediction in Alternative Accelerated Mechanical Cycling Test

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4259268
    Collections
    • Journal of Electronic Packaging

    Show full item record

    contributor authorMontazeri, Mahsa
    contributor authorMarbut, Cody J.
    contributor authorHuitink, David
    date accessioned2019-09-18T09:08:09Z
    date available2019-09-18T09:08:09Z
    date copyright5/24/2019 12:00:00 AM
    date issued2019
    identifier issn1043-7398
    identifier otherep_141_03_031011
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4259268
    description abstractIn this work, a rapid and low-cost accelerated reliability test methodology which was designed to simulate mechanical stresses induced in flip–chip bonded devices during the thermal cycling reliability test under isothermal conditions, is introduced and demonstrated using power device analogous test chips. By stressing these devices in a controlled environment, mechanical stresses become decoupled from the design and temperature, such that useful lifetimes can be predictable. Mechanical shear stress was cyclically applied directly to device relevant, flip–chip solder interconnects while monitoring for failure. Herein, finite element analysis (FEA) is used to extract various damage metrics of different solder materials, including PbSn37/63, SAC305, and nanosilver, in both thermal operation and the introduced alternative mechanical testing conditions. Plastic work density and strain are calculated in the critical solder interconnects as factors that indicate the amount of the damage accumulation per cycle during the mechanical cycling, thermal cycling, and power cycling tests. The number of cycles to failure for each test was calculated using the fatigue life model developed by Darveaux for eutectic PbSn solder, while for SAC305 Syed's method was used, and for nanosilver, the Knoerr et al. equations are applied. The effects of environmental temperature and shearing force frequency were studied for the mechanical cycling reliability test, where a modified Norris–Landzberg equation for mechanical cycling tests was explored using the simulation results. Finally, comparing the mechanical cycling with the equivalent thermal cycling and power cycling demonstrated a significant reduction in required test duration to achieve a reliability estimation.
    publisherAmerican Society of Mechanical Engineers (ASME)
    titleInterconnect Fatigue Failure Parameter Isolation for Power Device Reliability Prediction in Alternative Accelerated Mechanical Cycling Test
    typeJournal Paper
    journal volume141
    journal issue3
    journal titleJournal of Electronic Packaging
    identifier doi10.1115/1.4043480
    journal fristpage31011
    journal lastpage031011-11
    treeJournal of Electronic Packaging:;2019:;volume( 141 ):;issue: 003
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian