YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Electronic Packaging
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Electronic Packaging
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Design of Thermal Ground Planes for Cooling of Foldable Smartphones

    Source: Journal of Electronic Packaging:;2019:;volume( 141 ):;issue: 002::page 21004
    Author:
    Nematollahisarvestani, Ali
    ,
    Lewis, Ryan J.
    ,
    Lee, Yung-Cheng
    DOI: 10.1115/1.4042472
    Publisher: American Society of Mechanical Engineers (ASME)
    Abstract: Foldable smartphones are expected to be widely commercialized in the near future. Thermal ground plane (TGP), known as vapor chamber or two-dimensional flat heat pipe, is a promising solution for the thermal management of foldable smartphones. There are two approaches to designing a TGP for foldable smartphones. One approach uses two TGPs connected by a graphite bridge and the other approach uses a single, large, and foldable TGP. In this study, different thermal management solutions are simulated for a representative foldable smartphone with screen dimensions of 144 × 138.3 mm2 (twice the screen of iPhone 6 s with a 10 mm gap). In addition, the simulation includes two heat sources representing a main processor with dimensions of 14.45 × 14.41 mm2 and power of 3.3 W (A9 processor in iPhone 6S) and a broadband processor with dimensions of 8.26 × 9.02 mm2 and power of 2.5 W (Qualcomm broadband processor). For the simulation, a finite element method (FEM) model is calibrated and verified by steady-state experiments of two different TGPs. The calibrated model is then used to study three different cases: a graphite heat spreader, two TGPs with a graphite hinge, and a single, large, and foldable TGP. In the fully unfolded configuration, using a graphite heat spreader, the temperature difference across the spreader's surface is about 17 °C. For the design using two TGPs connected by a graphite bridge, the temperature difference is about 7.2 °C. Finally, for the design using a single large TGP with a joint region, the temperature difference is only 1–2 °C. These results suggest that a single foldable TGP or a configuration with two TGPs outperform the graphite sheet solution for the thermal management of foldable smartphones.
    • Download: (5.802Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Design of Thermal Ground Planes for Cooling of Foldable Smartphones

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4258964
    Collections
    • Journal of Electronic Packaging

    Show full item record

    contributor authorNematollahisarvestani, Ali
    contributor authorLewis, Ryan J.
    contributor authorLee, Yung-Cheng
    date accessioned2019-09-18T09:06:35Z
    date available2019-09-18T09:06:35Z
    date copyright3/1/2019 12:00:00 AM
    date issued2019
    identifier issn1043-7398
    identifier otherep_141_02_021004.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4258964
    description abstractFoldable smartphones are expected to be widely commercialized in the near future. Thermal ground plane (TGP), known as vapor chamber or two-dimensional flat heat pipe, is a promising solution for the thermal management of foldable smartphones. There are two approaches to designing a TGP for foldable smartphones. One approach uses two TGPs connected by a graphite bridge and the other approach uses a single, large, and foldable TGP. In this study, different thermal management solutions are simulated for a representative foldable smartphone with screen dimensions of 144 × 138.3 mm2 (twice the screen of iPhone 6 s with a 10 mm gap). In addition, the simulation includes two heat sources representing a main processor with dimensions of 14.45 × 14.41 mm2 and power of 3.3 W (A9 processor in iPhone 6S) and a broadband processor with dimensions of 8.26 × 9.02 mm2 and power of 2.5 W (Qualcomm broadband processor). For the simulation, a finite element method (FEM) model is calibrated and verified by steady-state experiments of two different TGPs. The calibrated model is then used to study three different cases: a graphite heat spreader, two TGPs with a graphite hinge, and a single, large, and foldable TGP. In the fully unfolded configuration, using a graphite heat spreader, the temperature difference across the spreader's surface is about 17 °C. For the design using two TGPs connected by a graphite bridge, the temperature difference is about 7.2 °C. Finally, for the design using a single large TGP with a joint region, the temperature difference is only 1–2 °C. These results suggest that a single foldable TGP or a configuration with two TGPs outperform the graphite sheet solution for the thermal management of foldable smartphones.
    publisherAmerican Society of Mechanical Engineers (ASME)
    titleDesign of Thermal Ground Planes for Cooling of Foldable Smartphones
    typeJournal Paper
    journal volume141
    journal issue2
    journal titleJournal of Electronic Packaging
    identifier doi10.1115/1.4042472
    journal fristpage21004
    journal lastpage021004-11
    treeJournal of Electronic Packaging:;2019:;volume( 141 ):;issue: 002
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian