YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Micro and Nano
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Micro and Nano
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Radial Throw in Micromilling: A Simulation-Based Study to Analyze the Effects on Surface Quality and Uncut Chip Thickness

    Source: Journal of Micro and Nano-Manufacturing:;2019:;volume( 007 ):;issue: 001::page 10907
    Author:
    Nahata, Sudhanshu
    ,
    Onler, Recep
    ,
    Ozdoganlar, O. Burak
    DOI: 10.1115/1.4043176
    Publisher: American Society of Mechanical Engineers (ASME)
    Abstract: This paper presents a simulation study toward analyzing the effect of radial throw in micromilling on quality metrics and on the deviation in tool-tip trajectory from its prescribed pattern. Both the surface location error (SLE) and the sidewall (peripheral) surface roughness are analyzed. The deviation in tool-tip trajectory is evaluated considering the flute-to-flute variations in the uncut chip thickness and changes in the tooth spacing angle. Radial throw indicates the instantaneous radial location of the tool axis, thereby capturing all salient features of tool-tip trajectory deviations, such as the general elliptical form of the radial motions. This is in contrast to the concept of run-out, which is a scalar quantity (total indicator reading) indicating the total displacement or change in the radial throw measured from a perfect cylindrical surface for one complete rotation of the axis. As such, measurement and analysis of radial throw is essential to understanding micromachining processes. In our previous work, we described an experimental approach for accurate determination of radial throw when using ultra-high-speed micromachining spindles. In this work, we present a simulation-based study to relate radial throw parameters and form to SLE, sidewall surface roughness, flute-to-flute variations of uncut chip thickness, and changes in tooth spacing angle for a two fluted micro-endmill. As expected, our study concludes that the magnitude, orientation, and form of radial throw all significantly affect the studied quality metrics, tooth spacing angle, and the flute-to-flute chip thickness variations. Specifically, the presence of radial throw with an elliptical form induces up to 50% variation in SLE, up to 20% variation in sidewall surface roughness, up to 60% variation in tooth spacing angle deviations, and up to 50% variation in flute-to-flute chip thickness. As such, the presented simulation approach can be used to assess the direct (kinematic) effects of the radial throw parameters on the quality metrics and chip thickness variations.
    • Download: (1.978Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Radial Throw in Micromilling: A Simulation-Based Study to Analyze the Effects on Surface Quality and Uncut Chip Thickness

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4258733
    Collections
    • Journal of Micro and Nano

    Show full item record

    contributor authorNahata, Sudhanshu
    contributor authorOnler, Recep
    contributor authorOzdoganlar, O. Burak
    date accessioned2019-09-18T09:05:24Z
    date available2019-09-18T09:05:24Z
    date copyright4/11/2019 12:00:00 AM
    date issued2019
    identifier issn2166-0468
    identifier otherjmnm_007_01_010907.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4258733
    description abstractThis paper presents a simulation study toward analyzing the effect of radial throw in micromilling on quality metrics and on the deviation in tool-tip trajectory from its prescribed pattern. Both the surface location error (SLE) and the sidewall (peripheral) surface roughness are analyzed. The deviation in tool-tip trajectory is evaluated considering the flute-to-flute variations in the uncut chip thickness and changes in the tooth spacing angle. Radial throw indicates the instantaneous radial location of the tool axis, thereby capturing all salient features of tool-tip trajectory deviations, such as the general elliptical form of the radial motions. This is in contrast to the concept of run-out, which is a scalar quantity (total indicator reading) indicating the total displacement or change in the radial throw measured from a perfect cylindrical surface for one complete rotation of the axis. As such, measurement and analysis of radial throw is essential to understanding micromachining processes. In our previous work, we described an experimental approach for accurate determination of radial throw when using ultra-high-speed micromachining spindles. In this work, we present a simulation-based study to relate radial throw parameters and form to SLE, sidewall surface roughness, flute-to-flute variations of uncut chip thickness, and changes in tooth spacing angle for a two fluted micro-endmill. As expected, our study concludes that the magnitude, orientation, and form of radial throw all significantly affect the studied quality metrics, tooth spacing angle, and the flute-to-flute chip thickness variations. Specifically, the presence of radial throw with an elliptical form induces up to 50% variation in SLE, up to 20% variation in sidewall surface roughness, up to 60% variation in tooth spacing angle deviations, and up to 50% variation in flute-to-flute chip thickness. As such, the presented simulation approach can be used to assess the direct (kinematic) effects of the radial throw parameters on the quality metrics and chip thickness variations.
    publisherAmerican Society of Mechanical Engineers (ASME)
    titleRadial Throw in Micromilling: A Simulation-Based Study to Analyze the Effects on Surface Quality and Uncut Chip Thickness
    typeJournal Paper
    journal volume7
    journal issue1
    journal titleJournal of Micro and Nano-Manufacturing
    identifier doi10.1115/1.4043176
    journal fristpage10907
    journal lastpage010907-8
    treeJournal of Micro and Nano-Manufacturing:;2019:;volume( 007 ):;issue: 001
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian