YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Engineering for Gas Turbines and Power
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Engineering for Gas Turbines and Power
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Gas Turbine Fouling Offshore: Effective Online Water Wash Through High Water-to-Air Ratio

    Source: Journal of Engineering for Gas Turbines and Power:;2019:;volume( 141 ):;issue: 004::page 41015
    Author:
    Madsen, Stian
    ,
    Bakken, Lars E.
    DOI: 10.1115/1.4041002
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: Optimized operation of gas turbines is discussed for a fleet of 11 GE LM2500PE engines at a Statoil North Sea offshore field in Norway. Three engines are generator drivers, and eight engines are compressor drivers. Several of the compressor drive engines are running at peak load (T5.4 control), hence, the production rate is limited by the available power from these engines. The majority of the engines discussed run continuously without redundancy, hence, the gas turbine uptime is critical for the field's production and economy. The performance and operational experience with online water wash at high water-to-air ratio (w.a.r.), as well as successful operation at longer maintenance intervals and higher average engine performance are described. The water-to-air ratio is significantly increased compared to the original equipment manufacturer (OEM) limit (OEM limit is 17 l/min which yields approximately 0.5% water-to-air ratio). Today the engines are operated at a water rate of 50 l/min (three times the OEM limit) which yields a 1.4% water-to-air ratio. Such a high water-to-air ratio has been proven to be the key parameter for obtaining good online water wash effectiveness. Possible downsides of high water-to-air ratio have been thoroughly studied.
    • Download: (1.704Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Gas Turbine Fouling Offshore: Effective Online Water Wash Through High Water-to-Air Ratio

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4256504
    Collections
    • Journal of Engineering for Gas Turbines and Power

    Show full item record

    contributor authorMadsen, Stian
    contributor authorBakken, Lars E.
    date accessioned2019-03-17T10:59:49Z
    date available2019-03-17T10:59:49Z
    date copyright12/3/2018 12:00:00 AM
    date issued2019
    identifier issn0742-4795
    identifier othergtp_141_04_041015.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4256504
    description abstractOptimized operation of gas turbines is discussed for a fleet of 11 GE LM2500PE engines at a Statoil North Sea offshore field in Norway. Three engines are generator drivers, and eight engines are compressor drivers. Several of the compressor drive engines are running at peak load (T5.4 control), hence, the production rate is limited by the available power from these engines. The majority of the engines discussed run continuously without redundancy, hence, the gas turbine uptime is critical for the field's production and economy. The performance and operational experience with online water wash at high water-to-air ratio (w.a.r.), as well as successful operation at longer maintenance intervals and higher average engine performance are described. The water-to-air ratio is significantly increased compared to the original equipment manufacturer (OEM) limit (OEM limit is 17 l/min which yields approximately 0.5% water-to-air ratio). Today the engines are operated at a water rate of 50 l/min (three times the OEM limit) which yields a 1.4% water-to-air ratio. Such a high water-to-air ratio has been proven to be the key parameter for obtaining good online water wash effectiveness. Possible downsides of high water-to-air ratio have been thoroughly studied.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleGas Turbine Fouling Offshore: Effective Online Water Wash Through High Water-to-Air Ratio
    typeJournal Paper
    journal volume141
    journal issue4
    journal titleJournal of Engineering for Gas Turbines and Power
    identifier doi10.1115/1.4041002
    journal fristpage41015
    journal lastpage041015-8
    treeJournal of Engineering for Gas Turbines and Power:;2019:;volume( 141 ):;issue: 004
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian