YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Dynamic Systems, Measurement, and Control
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Dynamic Systems, Measurement, and Control
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Two-Dimensional Modeling and System Identification of the Laser Metal Deposition Process

    Source: Journal of Dynamic Systems, Measurement, and Control:;2019:;volume( 141 ):;issue: 002::page 21012
    Author:
    Sammons, Patrick M.
    ,
    Bristow, Douglas A.
    ,
    Landers, Robert G.
    DOI: 10.1115/1.4041444
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: Additive manufacturing (AM) processes fabricate parts by adding material in a layer-by-layer fashion. In order to enable closed-loop process control—a major hurdle in the adoption of most AM processes—compact models suitable for control design and for describing the layer-by-layer material addition process are needed. This paper proposes a two-dimensional modeling framework whereby the deposition of the current layer is affected by both in-layer and layer-to-layer dynamics, both of which are driven by the state of the previous layer. The proposed framework can be used to describe phenomena observed in AM processes such as layer rippling and large defects in laser metal deposition (LMD) processes. Further, the proposed framework can be used to create two-dimensional dynamic models for the analysis of layer-to-layer stability and as a foundation for the design of layer-to-layer controllers for AM processes. In the application to LMD, a two-dimensional linear–nonlinear–linear (LNL) repetitive process model is proposed that contains a linear dynamic component, which describes the dynamic evolution of the process from layer to layer, cascaded with a static nonlinear component cascaded with another linear dynamic component, which describes the dynamic evolution of the process within a given layer. A methodology, which leverages the two-dimensional LNL structure, for identifying the model process parameters is presented and validated with quantitative and qualitative experimental results.
    • Download: (5.419Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Two-Dimensional Modeling and System Identification of the Laser Metal Deposition Process

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4256200
    Collections
    • Journal of Dynamic Systems, Measurement, and Control

    Show full item record

    contributor authorSammons, Patrick M.
    contributor authorBristow, Douglas A.
    contributor authorLanders, Robert G.
    date accessioned2019-03-17T10:33:43Z
    date available2019-03-17T10:33:43Z
    date copyright10/19/2018 12:00:00 AM
    date issued2019
    identifier issn0022-0434
    identifier otherds_141_02_021012.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4256200
    description abstractAdditive manufacturing (AM) processes fabricate parts by adding material in a layer-by-layer fashion. In order to enable closed-loop process control—a major hurdle in the adoption of most AM processes—compact models suitable for control design and for describing the layer-by-layer material addition process are needed. This paper proposes a two-dimensional modeling framework whereby the deposition of the current layer is affected by both in-layer and layer-to-layer dynamics, both of which are driven by the state of the previous layer. The proposed framework can be used to describe phenomena observed in AM processes such as layer rippling and large defects in laser metal deposition (LMD) processes. Further, the proposed framework can be used to create two-dimensional dynamic models for the analysis of layer-to-layer stability and as a foundation for the design of layer-to-layer controllers for AM processes. In the application to LMD, a two-dimensional linear–nonlinear–linear (LNL) repetitive process model is proposed that contains a linear dynamic component, which describes the dynamic evolution of the process from layer to layer, cascaded with a static nonlinear component cascaded with another linear dynamic component, which describes the dynamic evolution of the process within a given layer. A methodology, which leverages the two-dimensional LNL structure, for identifying the model process parameters is presented and validated with quantitative and qualitative experimental results.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleTwo-Dimensional Modeling and System Identification of the Laser Metal Deposition Process
    typeJournal Paper
    journal volume141
    journal issue2
    journal titleJournal of Dynamic Systems, Measurement, and Control
    identifier doi10.1115/1.4041444
    journal fristpage21012
    journal lastpage021012-10
    treeJournal of Dynamic Systems, Measurement, and Control:;2019:;volume( 141 ):;issue: 002
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian