YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Electronic Packaging
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Electronic Packaging
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Effect of Long-Term Room Temperature Aging on the Fatigue Properties of SnAgCu Solder Joint

    Source: Journal of Electronic Packaging:;2018:;volume( 140 ):;issue: 003::page 31005
    Author:
    Su, Sinan
    ,
    Fu, Nianjun
    ,
    John Akkara, Francy
    ,
    Hamasha, Sa'd
    DOI: 10.1115/1.4040105
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: Solder joints in electronic assemblies are subjected to mechanical and thermal cycling. These cyclic loadings lead to the fatigue failure of solder joints involving damage accumulation, crack initiation, crack propagation, and failure. Aging leads to significant changes on the microstructure and mechanical behavior of solder joints. While the effect of thermal aging on solder behavior has been examined, no prior studies have focused on the effect of long-term room temperature aging (25 °C) on the solder failure and fatigue behavior. In this paper, the effects of long-term room temperature aging on the fatigue behavior of five common lead-free solder alloys, i.e., SAC305, SAC105, SAC-Ni, SAC-X-Plus, and Innolot, have been investigated. Several individual lead-free solder joints on printed circuited boards with two aging conditions (no aging and 4 years of aging) have been prepared and subjected to shear cyclic stress–strain loadings until the complete failure. Fatigue life was recorded for each solder alloy. From the stress–strain hysteresis loop, inelastic work and plastic strain ranges were measured and empirically modeled with the fatigue life. The results indicated that 4 years of room temperature aging significantly decreases the fatigue life of the solder joints. Also, inelastic work per cycle and plastic strain range are increased after 4 years of room temperature aging. The fatigue life degradation for the solder alloys with doped elements (Ni, Bi, Sb) was relatively less compared to the traditional SAC105 and SAC305.
    • Download: (2.284Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Effect of Long-Term Room Temperature Aging on the Fatigue Properties of SnAgCu Solder Joint

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4254176
    Collections
    • Journal of Electronic Packaging

    Show full item record

    contributor authorSu, Sinan
    contributor authorFu, Nianjun
    contributor authorJohn Akkara, Francy
    contributor authorHamasha, Sa'd
    date accessioned2019-02-28T11:14:21Z
    date available2019-02-28T11:14:21Z
    date copyright5/21/2018 12:00:00 AM
    date issued2018
    identifier issn1043-7398
    identifier otherep_140_03_031005.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4254176
    description abstractSolder joints in electronic assemblies are subjected to mechanical and thermal cycling. These cyclic loadings lead to the fatigue failure of solder joints involving damage accumulation, crack initiation, crack propagation, and failure. Aging leads to significant changes on the microstructure and mechanical behavior of solder joints. While the effect of thermal aging on solder behavior has been examined, no prior studies have focused on the effect of long-term room temperature aging (25 °C) on the solder failure and fatigue behavior. In this paper, the effects of long-term room temperature aging on the fatigue behavior of five common lead-free solder alloys, i.e., SAC305, SAC105, SAC-Ni, SAC-X-Plus, and Innolot, have been investigated. Several individual lead-free solder joints on printed circuited boards with two aging conditions (no aging and 4 years of aging) have been prepared and subjected to shear cyclic stress–strain loadings until the complete failure. Fatigue life was recorded for each solder alloy. From the stress–strain hysteresis loop, inelastic work and plastic strain ranges were measured and empirically modeled with the fatigue life. The results indicated that 4 years of room temperature aging significantly decreases the fatigue life of the solder joints. Also, inelastic work per cycle and plastic strain range are increased after 4 years of room temperature aging. The fatigue life degradation for the solder alloys with doped elements (Ni, Bi, Sb) was relatively less compared to the traditional SAC105 and SAC305.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleEffect of Long-Term Room Temperature Aging on the Fatigue Properties of SnAgCu Solder Joint
    typeJournal Paper
    journal volume140
    journal issue3
    journal titleJournal of Electronic Packaging
    identifier doi10.1115/1.4040105
    journal fristpage31005
    journal lastpage031005-9
    treeJournal of Electronic Packaging:;2018:;volume( 140 ):;issue: 003
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian