YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Electronic Packaging
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Electronic Packaging
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Prediction and Mitigation of Vertical Cracking in High-Temperature Transient Liquid Phase Sintered Joints by Thermomechanical Simulation

    Source: Journal of Electronic Packaging:;2018:;volume( 140 ):;issue: 002::page 20903
    Author:
    Greve, Hannes
    ,
    Ali Moeini, S.
    ,
    McCluskey, Patrick
    ,
    Joshi, Shailesh
    DOI: 10.1115/1.4039265
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: Transient liquid phase sintering (TLPS) is a novel high-temperature attach technology. It is of particular interest for application as die attach in power electronic systems because of its high-melting temperature and high thermal conductivity. TLPS joints formed from sinter pastes consist of metallic particles embedded in matrices of intermetallic compounds (IMCs). Compared to conventional solder attach, TLPS joints consist to a considerably higher percentage of brittle IMCs. This raises the concern that TLPS joints are susceptible to brittle failure. In this paper, we describe and analyze the cooling-induced formation of vertical cracks as a newly detected failure mechanism unique to TLPS joints. In a power module structure with a TLPS joint as interconnect between a power device and a direct bond copper (DBC) substrate, cracks can form between the interface of the DBC and the TLPS joint when large voids are located in the proximity of the DBC. These cracks do not appear in regions with smaller voids. A method has been developed for the three-dimensional (3D) modeling of paste-based TLPS sinter joints, which possess complex microstructures with heterogeneous distributions of metal particles and voids in IMC matrices. Thermomechanical simulations of the postsintering cooling process have been performed and the influence of microstructure on the stress-response within the joint and at the joint interfaces have been characterized for three different material systems (Cu + Cu6Sn5, Cu + Cu3Sn, Ni + Ni3Sn4). The maximum principal stress within the assembly was found to be a poor indicator for prediction of vertical crack formation. In contrast, stress levels at the interface between the TLPS joint and the power substrate metallization are good indicators for this failure mechanism. Small voids lead to higher joint maximum principal stresses, but large voids induce higher interfacial stresses, which explain why the vertical cracking failure was only observed in joints with large voids.
    • Download: (3.313Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Prediction and Mitigation of Vertical Cracking in High-Temperature Transient Liquid Phase Sintered Joints by Thermomechanical Simulation

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4254153
    Collections
    • Journal of Electronic Packaging

    Show full item record

    contributor authorGreve, Hannes
    contributor authorAli Moeini, S.
    contributor authorMcCluskey, Patrick
    contributor authorJoshi, Shailesh
    date accessioned2019-02-28T11:14:13Z
    date available2019-02-28T11:14:13Z
    date copyright5/9/2018 12:00:00 AM
    date issued2018
    identifier issn1043-7398
    identifier otherep_140_02_020903.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4254153
    description abstractTransient liquid phase sintering (TLPS) is a novel high-temperature attach technology. It is of particular interest for application as die attach in power electronic systems because of its high-melting temperature and high thermal conductivity. TLPS joints formed from sinter pastes consist of metallic particles embedded in matrices of intermetallic compounds (IMCs). Compared to conventional solder attach, TLPS joints consist to a considerably higher percentage of brittle IMCs. This raises the concern that TLPS joints are susceptible to brittle failure. In this paper, we describe and analyze the cooling-induced formation of vertical cracks as a newly detected failure mechanism unique to TLPS joints. In a power module structure with a TLPS joint as interconnect between a power device and a direct bond copper (DBC) substrate, cracks can form between the interface of the DBC and the TLPS joint when large voids are located in the proximity of the DBC. These cracks do not appear in regions with smaller voids. A method has been developed for the three-dimensional (3D) modeling of paste-based TLPS sinter joints, which possess complex microstructures with heterogeneous distributions of metal particles and voids in IMC matrices. Thermomechanical simulations of the postsintering cooling process have been performed and the influence of microstructure on the stress-response within the joint and at the joint interfaces have been characterized for three different material systems (Cu + Cu6Sn5, Cu + Cu3Sn, Ni + Ni3Sn4). The maximum principal stress within the assembly was found to be a poor indicator for prediction of vertical crack formation. In contrast, stress levels at the interface between the TLPS joint and the power substrate metallization are good indicators for this failure mechanism. Small voids lead to higher joint maximum principal stresses, but large voids induce higher interfacial stresses, which explain why the vertical cracking failure was only observed in joints with large voids.
    publisherThe American Society of Mechanical Engineers (ASME)
    titlePrediction and Mitigation of Vertical Cracking in High-Temperature Transient Liquid Phase Sintered Joints by Thermomechanical Simulation
    typeJournal Paper
    journal volume140
    journal issue2
    journal titleJournal of Electronic Packaging
    identifier doi10.1115/1.4039265
    journal fristpage20903
    journal lastpage020903-9
    treeJournal of Electronic Packaging:;2018:;volume( 140 ):;issue: 002
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian