YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Dynamic Systems, Measurement, and Control
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Dynamic Systems, Measurement, and Control
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    A Control-Oriented Model for Trajectory-Based HCCI Combustion Control

    Source: Journal of Dynamic Systems, Measurement, and Control:;2018:;volume( 140 ):;issue: 009::page 91013
    Author:
    Zhang, Chen
    ,
    Sun, Zongxuan
    DOI: 10.1115/1.4039664
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: Previously, the authors have proposed the concept of piston trajectory-based homogeneous charge compression ignition (HCCI) combustion control enabled by a free piston engine (FPE) and shown its benefits on both engine thermal efficiency and emissions by implementing various piston trajectories. In order to realize the HCCI trajectory-based combustion control in practical applications, a control-oriented model with sufficient chemical kinetics information has to be developed. In this paper, such a model is proposed and its performance, in terms of computational speed and model fidelity, is compared to three existing models: a simplified model using a one-step global reaction, a reduced-order model using Jones–Lindstedt mechanism, and a complex physics-based model including detailed chemical reaction mechanisms. A unique phase separation method is proposed to significantly reduce the computational time and guarantee the prediction accuracy simultaneously. In addition, the paper also shows that the high fidelity of the proposed model is sustained at multiple working conditions, including different air-fuel ratios (AFR), various compression ratios (CR), and distinct piston motion patterns between the two end positions. Finally, an example is presented showing how the control-oriented model enables real-time optimization of the HCCI combustion phasing by varying the trajectories. The simulation results show that the combustion phasing can be adjusted quickly as desired, which further demonstrates the effectiveness of the piston trajectory-based combustion control.
    • Download: (2.149Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      A Control-Oriented Model for Trajectory-Based HCCI Combustion Control

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4254087
    Collections
    • Journal of Dynamic Systems, Measurement, and Control

    Show full item record

    contributor authorZhang, Chen
    contributor authorSun, Zongxuan
    date accessioned2019-02-28T11:13:50Z
    date available2019-02-28T11:13:50Z
    date copyright4/30/2018 12:00:00 AM
    date issued2018
    identifier issn0022-0434
    identifier otherds_140_09_091013.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4254087
    description abstractPreviously, the authors have proposed the concept of piston trajectory-based homogeneous charge compression ignition (HCCI) combustion control enabled by a free piston engine (FPE) and shown its benefits on both engine thermal efficiency and emissions by implementing various piston trajectories. In order to realize the HCCI trajectory-based combustion control in practical applications, a control-oriented model with sufficient chemical kinetics information has to be developed. In this paper, such a model is proposed and its performance, in terms of computational speed and model fidelity, is compared to three existing models: a simplified model using a one-step global reaction, a reduced-order model using Jones–Lindstedt mechanism, and a complex physics-based model including detailed chemical reaction mechanisms. A unique phase separation method is proposed to significantly reduce the computational time and guarantee the prediction accuracy simultaneously. In addition, the paper also shows that the high fidelity of the proposed model is sustained at multiple working conditions, including different air-fuel ratios (AFR), various compression ratios (CR), and distinct piston motion patterns between the two end positions. Finally, an example is presented showing how the control-oriented model enables real-time optimization of the HCCI combustion phasing by varying the trajectories. The simulation results show that the combustion phasing can be adjusted quickly as desired, which further demonstrates the effectiveness of the piston trajectory-based combustion control.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleA Control-Oriented Model for Trajectory-Based HCCI Combustion Control
    typeJournal Paper
    journal volume140
    journal issue9
    journal titleJournal of Dynamic Systems, Measurement, and Control
    identifier doi10.1115/1.4039664
    journal fristpage91013
    journal lastpage091013-10
    treeJournal of Dynamic Systems, Measurement, and Control:;2018:;volume( 140 ):;issue: 009
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian