YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Dynamic Systems, Measurement, and Control
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Dynamic Systems, Measurement, and Control
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    A Reduced Complexity Model for the Compressor Power of an Automotive Turbocharger

    Source: Journal of Dynamic Systems, Measurement, and Control:;2018:;volume( 140 ):;issue: 006::page 61018
    Author:
    Zeng, Tao
    ,
    Upadhyay, Devesh
    ,
    Zhu, Guoming
    DOI: 10.1115/1.4039285
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: Control-oriented models for automotive turbocharger (TC) compressors typically describe the compressor power assuming an isentropic thermodynamic process with fixed isentropic and mechanical efficiencies for power transmission between the turbine and the compressor. Although these simplifications make the control-oriented model tractable, they also introduce additional errors due to unmodeled dynamics. This is especially true for map-based approaches since the manufacture-provided maps tend to be sparse and often incomplete at the operational boundaries, especially at operational conditions with low mass flow rate and low speed. Extrapolation scheme is often used when the compressor is operated outside the mapped regions, which introduces additional errors. Furthermore, the manufacture-provided compressor maps, based on steady-flow bench tests, could be quite different from those under pulsating engine flow. In this paper, a physics-based model of compressor power is developed using Euler equations for turbomachinery, where the mass flow rate and the compressor rotational speed are used as model inputs. Two new coefficients, speed and power coefficients, are defined. As a result, this makes it possible to directly estimate the compressor power over the entire compressor operational range based on a single analytic relationship. The proposed modeling approach is validated against test data from standard TC flow bench tests, standard supercharger tests, steady-state, and certain transient engine dynamometer tests. Model validation results show that the proposed model has acceptable accuracy for model-based control design and also reduces the dimension of the parameter space typically needed to model compressor dynamics.
    • Download: (2.348Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      A Reduced Complexity Model for the Compressor Power of an Automotive Turbocharger

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4254085
    Collections
    • Journal of Dynamic Systems, Measurement, and Control

    Show full item record

    contributor authorZeng, Tao
    contributor authorUpadhyay, Devesh
    contributor authorZhu, Guoming
    date accessioned2019-02-28T11:13:49Z
    date available2019-02-28T11:13:49Z
    date copyright3/27/2018 12:00:00 AM
    date issued2018
    identifier issn0022-0434
    identifier otherds_140_06_061018.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4254085
    description abstractControl-oriented models for automotive turbocharger (TC) compressors typically describe the compressor power assuming an isentropic thermodynamic process with fixed isentropic and mechanical efficiencies for power transmission between the turbine and the compressor. Although these simplifications make the control-oriented model tractable, they also introduce additional errors due to unmodeled dynamics. This is especially true for map-based approaches since the manufacture-provided maps tend to be sparse and often incomplete at the operational boundaries, especially at operational conditions with low mass flow rate and low speed. Extrapolation scheme is often used when the compressor is operated outside the mapped regions, which introduces additional errors. Furthermore, the manufacture-provided compressor maps, based on steady-flow bench tests, could be quite different from those under pulsating engine flow. In this paper, a physics-based model of compressor power is developed using Euler equations for turbomachinery, where the mass flow rate and the compressor rotational speed are used as model inputs. Two new coefficients, speed and power coefficients, are defined. As a result, this makes it possible to directly estimate the compressor power over the entire compressor operational range based on a single analytic relationship. The proposed modeling approach is validated against test data from standard TC flow bench tests, standard supercharger tests, steady-state, and certain transient engine dynamometer tests. Model validation results show that the proposed model has acceptable accuracy for model-based control design and also reduces the dimension of the parameter space typically needed to model compressor dynamics.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleA Reduced Complexity Model for the Compressor Power of an Automotive Turbocharger
    typeJournal Paper
    journal volume140
    journal issue6
    journal titleJournal of Dynamic Systems, Measurement, and Control
    identifier doi10.1115/1.4039285
    journal fristpage61018
    journal lastpage061018-10
    treeJournal of Dynamic Systems, Measurement, and Control:;2018:;volume( 140 ):;issue: 006
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian