YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Dynamic Systems, Measurement, and Control
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Dynamic Systems, Measurement, and Control
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Design, Development, and Evaluation of a Control Framework for an Atkinson Cycle Engine

    Source: Journal of Dynamic Systems, Measurement, and Control:;2018:;volume( 140 ):;issue: 005::page 51005
    Author:
    Murtaza, G.
    ,
    Bhatti, A. I.
    ,
    Ahmed, Q.
    DOI: 10.1115/1.4038299
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: The efficiency of the spark ignition (SI) engine degrades while working at part loads. It can be optimally dealt with a slightly different thermodynamic cycle termed as an Atkinson cycle. It can be implemented in the conventional SI engines by incorporating advanced mechanisms as variable valve timing (VVT) and variable compression ratio (VCR). In this research, a control framework for the Atkinson cycle engine with flexible intake valve load control strategy is designed and developed. The control framework based on the extended mean value engine model (EMVEM) of the Atkinson cycle engine is evaluated in the view of fuel economy at the medium and higher load operating conditions for the standard new European driving cycle (NEDC), federal urban driving schedule (FUDS), and federal highway driving schedule (FHDS) cycles. In this context, the authors have already proposed a control-oriented EMVEM model of the Atkinson cycle engine with variable intake valve actuation. To demonstrate the potential benefits of the VCR Atkinson cycle VVT engine, for the various driving cycles, in the presence of auxiliary loads and uncertain road loads, its EMVEM model is simulated by using a controller having similar specifications as that of the conventional gasoline engine. The simulation results point toward the significant reduction in engine part load losses and improvement in the thermal efficiency. Consequently, considerable enhancement in the fuel economy of the VCR Atkinson cycle VVT engine is achieved over conventional Otto cycle engine during the NEDC, FUDS, and FHDS cycles.
    • Download: (1.623Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Design, Development, and Evaluation of a Control Framework for an Atkinson Cycle Engine

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4253993
    Collections
    • Journal of Dynamic Systems, Measurement, and Control

    Show full item record

    contributor authorMurtaza, G.
    contributor authorBhatti, A. I.
    contributor authorAhmed, Q.
    date accessioned2019-02-28T11:13:20Z
    date available2019-02-28T11:13:20Z
    date copyright12/19/2017 12:00:00 AM
    date issued2018
    identifier issn0022-0434
    identifier otherds_140_05_051005.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4253993
    description abstractThe efficiency of the spark ignition (SI) engine degrades while working at part loads. It can be optimally dealt with a slightly different thermodynamic cycle termed as an Atkinson cycle. It can be implemented in the conventional SI engines by incorporating advanced mechanisms as variable valve timing (VVT) and variable compression ratio (VCR). In this research, a control framework for the Atkinson cycle engine with flexible intake valve load control strategy is designed and developed. The control framework based on the extended mean value engine model (EMVEM) of the Atkinson cycle engine is evaluated in the view of fuel economy at the medium and higher load operating conditions for the standard new European driving cycle (NEDC), federal urban driving schedule (FUDS), and federal highway driving schedule (FHDS) cycles. In this context, the authors have already proposed a control-oriented EMVEM model of the Atkinson cycle engine with variable intake valve actuation. To demonstrate the potential benefits of the VCR Atkinson cycle VVT engine, for the various driving cycles, in the presence of auxiliary loads and uncertain road loads, its EMVEM model is simulated by using a controller having similar specifications as that of the conventional gasoline engine. The simulation results point toward the significant reduction in engine part load losses and improvement in the thermal efficiency. Consequently, considerable enhancement in the fuel economy of the VCR Atkinson cycle VVT engine is achieved over conventional Otto cycle engine during the NEDC, FUDS, and FHDS cycles.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleDesign, Development, and Evaluation of a Control Framework for an Atkinson Cycle Engine
    typeJournal Paper
    journal volume140
    journal issue5
    journal titleJournal of Dynamic Systems, Measurement, and Control
    identifier doi10.1115/1.4038299
    journal fristpage51005
    journal lastpage051005-9
    treeJournal of Dynamic Systems, Measurement, and Control:;2018:;volume( 140 ):;issue: 005
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian