YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Electronic Packaging
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Electronic Packaging
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Thermal Performance of a Light Emitting Diode Light Engine for a Multipurpose Automotive Exterior Lighting System With Competing Board Technologies

    Source: Journal of Electronic Packaging:;2017:;volume( 139 ):;issue: 002::page 20907
    Author:
    Zeynep Uras, Umut
    ,
    Arık, Mehmet
    ,
    Tamdoğan, Enes
    DOI: 10.1115/1.4036403
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: In recent years, light emitting diodes (LEDs) have become an attractive technology for general and automotive illumination systems replacing old-fashioned incandescent and halogen systems. LEDs are preferable for automobile lighting applications due to its numerous advantages such as low power consumption and precise optical control. Although these solid state lighting (SSL) products offer unique advantages, thermal management is one of the main issues due to severe ambient conditions and compact volume. Conventionally, tightly packaged double-sided FR4-based printed circuit boards (PCBs) are utilized for both driver electronic components and LEDs. In fact, this approach will be a leading trend for advanced internet of things applications embedded LED systems in the near future. Therefore, automotive lighting systems are already facing with tight-packaging issues. To evaluate thermal issues, a hybrid study of experimental and computational models is developed to determine the local temperature distribution on both sides of a three-purpose automotive light engine for three different PCB approaches having different materials but the same geometry. Both results showed that FR4 PCB has a temperature gradient (TMaxBoard to TAmbient) of over 63 °C. Moreover, a number of local hotspots occurred over FR4 PCB due to low thermal conductivity. Later, a metal core PCB is investigated to abate local hot spots. A further study has been performed with an advanced heat spreader board based on vapor chamber technology. Results showed that a thermal enhancement of 7.4% and 25.8% over Al metal core and FR4-based boards with the advanced vapor chamber substrate is observed. In addition to superior thermal performance, a significant amount of lumen extraction in excess of 15% is measured, and a higher reliability rate is expected.
    • Download: (2.686Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Thermal Performance of a Light Emitting Diode Light Engine for a Multipurpose Automotive Exterior Lighting System With Competing Board Technologies

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4236853
    Collections
    • Journal of Electronic Packaging

    Show full item record

    contributor authorZeynep Uras, Umut
    contributor authorArık, Mehmet
    contributor authorTamdoğan, Enes
    date accessioned2017-11-25T07:21:03Z
    date available2017-11-25T07:21:03Z
    date copyright2017/12/6
    date issued2017
    identifier issn1043-7398
    identifier otherep_139_02_020907.pdf
    identifier urihttp://138.201.223.254:8080/yetl1/handle/yetl/4236853
    description abstractIn recent years, light emitting diodes (LEDs) have become an attractive technology for general and automotive illumination systems replacing old-fashioned incandescent and halogen systems. LEDs are preferable for automobile lighting applications due to its numerous advantages such as low power consumption and precise optical control. Although these solid state lighting (SSL) products offer unique advantages, thermal management is one of the main issues due to severe ambient conditions and compact volume. Conventionally, tightly packaged double-sided FR4-based printed circuit boards (PCBs) are utilized for both driver electronic components and LEDs. In fact, this approach will be a leading trend for advanced internet of things applications embedded LED systems in the near future. Therefore, automotive lighting systems are already facing with tight-packaging issues. To evaluate thermal issues, a hybrid study of experimental and computational models is developed to determine the local temperature distribution on both sides of a three-purpose automotive light engine for three different PCB approaches having different materials but the same geometry. Both results showed that FR4 PCB has a temperature gradient (TMaxBoard to TAmbient) of over 63 °C. Moreover, a number of local hotspots occurred over FR4 PCB due to low thermal conductivity. Later, a metal core PCB is investigated to abate local hot spots. A further study has been performed with an advanced heat spreader board based on vapor chamber technology. Results showed that a thermal enhancement of 7.4% and 25.8% over Al metal core and FR4-based boards with the advanced vapor chamber substrate is observed. In addition to superior thermal performance, a significant amount of lumen extraction in excess of 15% is measured, and a higher reliability rate is expected.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleThermal Performance of a Light Emitting Diode Light Engine for a Multipurpose Automotive Exterior Lighting System With Competing Board Technologies
    typeJournal Paper
    journal volume139
    journal issue2
    journal titleJournal of Electronic Packaging
    identifier doi10.1115/1.4036403
    journal fristpage20907
    journal lastpage020907-8
    treeJournal of Electronic Packaging:;2017:;volume( 139 ):;issue: 002
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian