YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Dynamic Systems, Measurement, and Control
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Dynamic Systems, Measurement, and Control
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Nonlinear Model Predictive Control of Axial Piston Pumps

    Source: Journal of Dynamic Systems, Measurement, and Control:;2017:;volume( 139 ):;issue: 008::page 81008
    Author:
    Zeman, Paul
    ,
    Kemmetmüller, Wolfgang
    ,
    Kugi, Andreas
    DOI: 10.1115/1.4035608
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: Variable displacement axial piston units are the core components of many hydrostatic and hydraulic hybrid drive trains. Therein, the fast and accurate control of the swash plate angle, utilizing the full possible dynamics of the displacement system, is essential for a good performance of the overall drive train. This paper describes the development, implementation, and the experimental validation of a control strategy for the swash plate angle based on nonlinear model predictive control (NMPC). A tailored mathematical model, which serves as the basis for the NMPC, is described in the first part of the paper. Two versions of NMPC, an indirect and a direct method, are compared with respect to their numerical complexity and their capability of handling input and state constraints. An observer strategy, which is designed to obtain the nonmeasurable states and varying parameters of the system, completes the overall control strategy. To reduce the negative influence of stick–slip friction, the concept of dithering is applied in the experimental implementation. The differences of the NMPC methods are analyzed by simulation studies and experiments. Finally, the experimental results, using an industrial electronic control unit (ECU), prove the practical feasibility and the improved control accuracy and robustness in comparison to classical (nonlinear) control strategies.
    • Download: (1.310Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Nonlinear Model Predictive Control of Axial Piston Pumps

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4236682
    Collections
    • Journal of Dynamic Systems, Measurement, and Control

    Show full item record

    contributor authorZeman, Paul
    contributor authorKemmetmüller, Wolfgang
    contributor authorKugi, Andreas
    date accessioned2017-11-25T07:20:49Z
    date available2017-11-25T07:20:49Z
    date copyright2017/24/5
    date issued2017
    identifier issn0022-0434
    identifier otherds_139_08_081008.pdf
    identifier urihttp://138.201.223.254:8080/yetl1/handle/yetl/4236682
    description abstractVariable displacement axial piston units are the core components of many hydrostatic and hydraulic hybrid drive trains. Therein, the fast and accurate control of the swash plate angle, utilizing the full possible dynamics of the displacement system, is essential for a good performance of the overall drive train. This paper describes the development, implementation, and the experimental validation of a control strategy for the swash plate angle based on nonlinear model predictive control (NMPC). A tailored mathematical model, which serves as the basis for the NMPC, is described in the first part of the paper. Two versions of NMPC, an indirect and a direct method, are compared with respect to their numerical complexity and their capability of handling input and state constraints. An observer strategy, which is designed to obtain the nonmeasurable states and varying parameters of the system, completes the overall control strategy. To reduce the negative influence of stick–slip friction, the concept of dithering is applied in the experimental implementation. The differences of the NMPC methods are analyzed by simulation studies and experiments. Finally, the experimental results, using an industrial electronic control unit (ECU), prove the practical feasibility and the improved control accuracy and robustness in comparison to classical (nonlinear) control strategies.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleNonlinear Model Predictive Control of Axial Piston Pumps
    typeJournal Paper
    journal volume139
    journal issue8
    journal titleJournal of Dynamic Systems, Measurement, and Control
    identifier doi10.1115/1.4035608
    journal fristpage81008
    journal lastpage081008-11
    treeJournal of Dynamic Systems, Measurement, and Control:;2017:;volume( 139 ):;issue: 008
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian