YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Dynamic Systems, Measurement, and Control
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Dynamic Systems, Measurement, and Control
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Dynamic Characteristics of a Pressure-Compensated Inlet-Metered Pump

    Source: Journal of Dynamic Systems, Measurement, and Control:;2017:;volume( 139 ):;issue: 006::page 64502
    Author:
    Wisch, Julie K.
    ,
    Manring, Noah D.
    ,
    Fales, Roger C.
    DOI: 10.1115/1.4035298
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: Pressure-compensated pumps are routinely used for supplying fluid power for hydraulic control systems. These pumps traditionally exhibit significant overshoot and oscillation before reaching a steady-state pressure condition, thus requiring the use of downstream safety valves to prevent over pressurization. In addition to over pressurizing the hydraulic control system, the response of the traditional pressure-compensated pump often induces excessive noise and creates instability for other components within the system. In this paper, a nontraditional pressure-compensated hydraulic pump is studied based upon the paradigm that has been offered by diesel-engine technology. This technology uses an inlet-metered pump to provide pressurized fuel for the high-pressure, fuel-injector rail. The analysis of this paper shows that a system of this type may be used to produce a first-order pressure response with no overshoot and oscillation, and that the characteristic time constant and settling time may be designed by specifying parameters that are identified in this research. The problem of cavitation damage is also discussed based upon preliminary testing done at the University of Missouri, and it is suggested that by using hardened machine parts cavitation damage may be prevented in these machines. In conclusion, this paper shows that continued development of the inlet-metered pump may be warranted for those applications where pressure overshoot and oscillation cannot be tolerated due to safety, noise, or other dynamical considerations.
    • Download: (296.7Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Dynamic Characteristics of a Pressure-Compensated Inlet-Metered Pump

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4236656
    Collections
    • Journal of Dynamic Systems, Measurement, and Control

    Show full item record

    contributor authorWisch, Julie K.
    contributor authorManring, Noah D.
    contributor authorFales, Roger C.
    date accessioned2017-11-25T07:20:47Z
    date available2017-11-25T07:20:47Z
    date copyright2017/22/3
    date issued2017
    identifier issn0022-0434
    identifier otherds_139_06_064502.pdf
    identifier urihttp://138.201.223.254:8080/yetl1/handle/yetl/4236656
    description abstractPressure-compensated pumps are routinely used for supplying fluid power for hydraulic control systems. These pumps traditionally exhibit significant overshoot and oscillation before reaching a steady-state pressure condition, thus requiring the use of downstream safety valves to prevent over pressurization. In addition to over pressurizing the hydraulic control system, the response of the traditional pressure-compensated pump often induces excessive noise and creates instability for other components within the system. In this paper, a nontraditional pressure-compensated hydraulic pump is studied based upon the paradigm that has been offered by diesel-engine technology. This technology uses an inlet-metered pump to provide pressurized fuel for the high-pressure, fuel-injector rail. The analysis of this paper shows that a system of this type may be used to produce a first-order pressure response with no overshoot and oscillation, and that the characteristic time constant and settling time may be designed by specifying parameters that are identified in this research. The problem of cavitation damage is also discussed based upon preliminary testing done at the University of Missouri, and it is suggested that by using hardened machine parts cavitation damage may be prevented in these machines. In conclusion, this paper shows that continued development of the inlet-metered pump may be warranted for those applications where pressure overshoot and oscillation cannot be tolerated due to safety, noise, or other dynamical considerations.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleDynamic Characteristics of a Pressure-Compensated Inlet-Metered Pump
    typeJournal Paper
    journal volume139
    journal issue6
    journal titleJournal of Dynamic Systems, Measurement, and Control
    identifier doi10.1115/1.4035298
    journal fristpage64502
    journal lastpage064502-6
    treeJournal of Dynamic Systems, Measurement, and Control:;2017:;volume( 139 ):;issue: 006
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian