YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Dynamic Systems, Measurement, and Control
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Dynamic Systems, Measurement, and Control
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Parameter Identification of Permanent Magnet Synchronous Machine Based on an Adaptive Mutation Dynamic Differential Evolution

    Source: Journal of Dynamic Systems, Measurement, and Control:;2017:;volume( 139 ):;issue: 006::page 61006
    Author:
    Wu, Lianghong
    ,
    Liu, Zhao-Hua
    ,
    Wei, Hua-Liang
    ,
    Zhong, Qing-Chang
    ,
    Xiao, Xiao-Shi
    DOI: 10.1115/1.4035239
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: The problem of parameter estimation of permanent-magnet synchronous machines (PMSMs) can be formulated as a nonlinear optimization problem. To obtain accurate machine parameters, it is necessary to develop easily applicable but efficient optimization algorithms to solve the parameter estimation models. This paper proposes a novel dynamic differential evolution with adaptive mutation operator (AMDDE) algorithm for the multiparameter simultaneous estimation of a nonsalient pole PMSM. The dynamic updating of population enables AMDDE to responds to any improved changes of the population immediately and thus generates better optimization solutions compared with the static mechanism used in original differential evolution. Two mutation strategies, namely DE/rand/1 and DE/best/1, are adaptively employed to balance the global exploration and local exploitation. The effectiveness of the proposed AMDDE is demonstrated on the multiparameter estimation for a nonsalient pole PMSM. Experimental results indicate that the proposed method significantly outperforms the existing peer algorithms in efficiency, accuracy, and robustness. Furthermore, the new algorithm can be potentially realized in digital microcontroller due to its simple structure and lower memory requirement. The proposed algorithm can also be applied to other parameter estimation and optimization problems.
    • Download: (1.153Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Parameter Identification of Permanent Magnet Synchronous Machine Based on an Adaptive Mutation Dynamic Differential Evolution

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4236645
    Collections
    • Journal of Dynamic Systems, Measurement, and Control

    Show full item record

    contributor authorWu, Lianghong
    contributor authorLiu, Zhao-Hua
    contributor authorWei, Hua-Liang
    contributor authorZhong, Qing-Chang
    contributor authorXiao, Xiao-Shi
    date accessioned2017-11-25T07:20:46Z
    date available2017-11-25T07:20:46Z
    date copyright2017/23/3
    date issued2017
    identifier issn0022-0434
    identifier otherds_139_06_061006.pdf
    identifier urihttp://138.201.223.254:8080/yetl1/handle/yetl/4236645
    description abstractThe problem of parameter estimation of permanent-magnet synchronous machines (PMSMs) can be formulated as a nonlinear optimization problem. To obtain accurate machine parameters, it is necessary to develop easily applicable but efficient optimization algorithms to solve the parameter estimation models. This paper proposes a novel dynamic differential evolution with adaptive mutation operator (AMDDE) algorithm for the multiparameter simultaneous estimation of a nonsalient pole PMSM. The dynamic updating of population enables AMDDE to responds to any improved changes of the population immediately and thus generates better optimization solutions compared with the static mechanism used in original differential evolution. Two mutation strategies, namely DE/rand/1 and DE/best/1, are adaptively employed to balance the global exploration and local exploitation. The effectiveness of the proposed AMDDE is demonstrated on the multiparameter estimation for a nonsalient pole PMSM. Experimental results indicate that the proposed method significantly outperforms the existing peer algorithms in efficiency, accuracy, and robustness. Furthermore, the new algorithm can be potentially realized in digital microcontroller due to its simple structure and lower memory requirement. The proposed algorithm can also be applied to other parameter estimation and optimization problems.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleParameter Identification of Permanent Magnet Synchronous Machine Based on an Adaptive Mutation Dynamic Differential Evolution
    typeJournal Paper
    journal volume139
    journal issue6
    journal titleJournal of Dynamic Systems, Measurement, and Control
    identifier doi10.1115/1.4035239
    journal fristpage61006
    journal lastpage061006-9
    treeJournal of Dynamic Systems, Measurement, and Control:;2017:;volume( 139 ):;issue: 006
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian