YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Dynamic Systems, Measurement, and Control
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Dynamic Systems, Measurement, and Control
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Comparative Dynamic Control of SynRM Servodrive Continuously Variable Transmission System Using Blend Amend Recurrent Gegenbauer-Functional-Expansions Neural Network Control and Altered Artificial Bee Colony Optimization

    Source: Journal of Dynamic Systems, Measurement, and Control:;2017:;volume( 139 ):;issue: 005::page 51007
    Author:
    Lin, Chih-Hong
    DOI: 10.1115/1.4035349
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: In comparison control performance with more complex and nonlinear control methods, the classical linear controller is poor because of the nonlinear uncertainty action that the continuously variable transmission (CVT) system is operated by the synchronous reluctance motor (SynRM). Owing to good learning skill online, a blend amended recurrent Gegenbauer-functional-expansions neural network (NN) control system was developed to return to the nonlinear uncertainties behavior. The blend amended recurrent Gegenbauer-functional-expansions NN control system can fulfill overseer control, amended recurrent Gegenbauer-functional-expansions NN control with an adaptive dharma, and recompensed control with a reckoned dharma. In addition, according to the Lyapunov stability theorem, the adaptive dharma in the amended recurrent Gegenbauer-functional-expansions NN and the reckoned dharma of the recompensed controller are established. Furthermore, an altered artificial bee colony optimization (ABCO) yields two varied learning rates for two parameters to find two optimal values, which helped improve convergence. Finally, the experimental results with various comparisons are demonstrated to confirm that the proposed control system can result in better control performance.
    • Download: (5.576Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Comparative Dynamic Control of SynRM Servodrive Continuously Variable Transmission System Using Blend Amend Recurrent Gegenbauer-Functional-Expansions Neural Network Control and Altered Artificial Bee Colony Optimization

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4236631
    Collections
    • Journal of Dynamic Systems, Measurement, and Control

    Show full item record

    contributor authorLin, Chih-Hong
    date accessioned2017-11-25T07:20:45Z
    date available2017-11-25T07:20:45Z
    date copyright2017/13/3
    date issued2017
    identifier issn0022-0434
    identifier otherds_139_05_051007.pdf
    identifier urihttp://138.201.223.254:8080/yetl1/handle/yetl/4236631
    description abstractIn comparison control performance with more complex and nonlinear control methods, the classical linear controller is poor because of the nonlinear uncertainty action that the continuously variable transmission (CVT) system is operated by the synchronous reluctance motor (SynRM). Owing to good learning skill online, a blend amended recurrent Gegenbauer-functional-expansions neural network (NN) control system was developed to return to the nonlinear uncertainties behavior. The blend amended recurrent Gegenbauer-functional-expansions NN control system can fulfill overseer control, amended recurrent Gegenbauer-functional-expansions NN control with an adaptive dharma, and recompensed control with a reckoned dharma. In addition, according to the Lyapunov stability theorem, the adaptive dharma in the amended recurrent Gegenbauer-functional-expansions NN and the reckoned dharma of the recompensed controller are established. Furthermore, an altered artificial bee colony optimization (ABCO) yields two varied learning rates for two parameters to find two optimal values, which helped improve convergence. Finally, the experimental results with various comparisons are demonstrated to confirm that the proposed control system can result in better control performance.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleComparative Dynamic Control of SynRM Servodrive Continuously Variable Transmission System Using Blend Amend Recurrent Gegenbauer-Functional-Expansions Neural Network Control and Altered Artificial Bee Colony Optimization
    typeJournal Paper
    journal volume139
    journal issue5
    journal titleJournal of Dynamic Systems, Measurement, and Control
    identifier doi10.1115/1.4035349
    journal fristpage51007
    journal lastpage051007-13
    treeJournal of Dynamic Systems, Measurement, and Control:;2017:;volume( 139 ):;issue: 005
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian