YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Dynamic Systems, Measurement, and Control
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Dynamic Systems, Measurement, and Control
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    System Modeling and Simulation of In-Stream Hydrokinetic Turbines for Power Management and Control

    Source: Journal of Dynamic Systems, Measurement, and Control:;2017:;volume( 139 ):;issue: 005::page 51005
    Author:
    Tzelepis, Vasileios
    ,
    VanZwieten, James H.
    ,
    Xiros, Nikolaos I.
    ,
    Sultan, Cornel
    DOI: 10.1115/1.4035235
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: Electricity generation from moving currents without using dams (i.e., in-stream hydrokinetic electricity) has the potential to introduce multiple GW of renewable power to U.S. grids. This study evaluates a control system designed to regulate the generator rotor rate (rpm) to improve power production from in-stream hydrokinetic turbines. The control algorithm is evaluated using numerical models of both a rigidly mounted tidal turbine (TT) and a moored ocean current turbine (OCT) coupled to an induction electric machine model. The moored simulation utilizes an innovative approach for coupling a multiple degrees-of-freedom (DOF) nonlinear hydrodynamic/mechanical turbine model with a nonlinear electromechanical generator model. Based on the turbine torque-speed characteristic, as well as the asynchronous machine features, a proportional–integral (PI) controller is used to generate a correction term for the frequency of the three-phase sinusoidal voltages that are supplied to the asynchronous generator. The speed control of the induction generator through the supply frequency is accomplished by a simplified voltage source inverter (VSI). The simplified VSI consists of control voltage sources (CVSs), while the comparison with a real VSI using diodes and transistors, which are controlled by pulse width modulation (PWM) technique, is also presented. Simulations are used to evaluate the developed algorithms showing that rpm fluctuations are around 0.02 for a tidal turbine operating in a wave field with a 6 m significant wave height and around 0.005 for a moored ocean current turbine operating in a wave field with a 2 m significant wave height.
    • Download: (3.042Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      System Modeling and Simulation of In-Stream Hydrokinetic Turbines for Power Management and Control

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4236628
    Collections
    • Journal of Dynamic Systems, Measurement, and Control

    Show full item record

    contributor authorTzelepis, Vasileios
    contributor authorVanZwieten, James H.
    contributor authorXiros, Nikolaos I.
    contributor authorSultan, Cornel
    date accessioned2017-11-25T07:20:44Z
    date available2017-11-25T07:20:44Z
    date copyright2017/13/3
    date issued2017
    identifier issn0022-0434
    identifier otherds_139_05_051005.pdf
    identifier urihttp://138.201.223.254:8080/yetl1/handle/yetl/4236628
    description abstractElectricity generation from moving currents without using dams (i.e., in-stream hydrokinetic electricity) has the potential to introduce multiple GW of renewable power to U.S. grids. This study evaluates a control system designed to regulate the generator rotor rate (rpm) to improve power production from in-stream hydrokinetic turbines. The control algorithm is evaluated using numerical models of both a rigidly mounted tidal turbine (TT) and a moored ocean current turbine (OCT) coupled to an induction electric machine model. The moored simulation utilizes an innovative approach for coupling a multiple degrees-of-freedom (DOF) nonlinear hydrodynamic/mechanical turbine model with a nonlinear electromechanical generator model. Based on the turbine torque-speed characteristic, as well as the asynchronous machine features, a proportional–integral (PI) controller is used to generate a correction term for the frequency of the three-phase sinusoidal voltages that are supplied to the asynchronous generator. The speed control of the induction generator through the supply frequency is accomplished by a simplified voltage source inverter (VSI). The simplified VSI consists of control voltage sources (CVSs), while the comparison with a real VSI using diodes and transistors, which are controlled by pulse width modulation (PWM) technique, is also presented. Simulations are used to evaluate the developed algorithms showing that rpm fluctuations are around 0.02 for a tidal turbine operating in a wave field with a 6 m significant wave height and around 0.005 for a moored ocean current turbine operating in a wave field with a 2 m significant wave height.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleSystem Modeling and Simulation of In-Stream Hydrokinetic Turbines for Power Management and Control
    typeJournal Paper
    journal volume139
    journal issue5
    journal titleJournal of Dynamic Systems, Measurement, and Control
    identifier doi10.1115/1.4035235
    journal fristpage51005
    journal lastpage051005-15
    treeJournal of Dynamic Systems, Measurement, and Control:;2017:;volume( 139 ):;issue: 005
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian