YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Engineering for Gas Turbines and Power
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Engineering for Gas Turbines and Power
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    A Research on Waste-Gated Turbine Performance Under Unsteady Flow Condition

    Source: Journal of Engineering for Gas Turbines and Power:;2017:;volume( 139 ):;issue: 006::page 62603
    Author:
    Deng, Q.
    ,
    Burke, R. D.
    ,
    Zhang, Q.
    ,
    Pohorelsky, Ludek
    DOI: 10.1115/1.4035284
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: Turbochargers are key components of engine air-paths that must be carefully considered during the development process. The combination of fluid, mechanical, and thermal phenomenon make the turbocharger a highly dynamic and nonlinear modeling challenge. The aim of this study is to quantify the dynamic response of the turbocharger system across a frequency spectrum from 0.003 Hz to 500 Hz, i.e., for exhaust gas pulsation in steady state, load steps, and cold start drive cycles, to validate the assumption of quasi-steady assumptions for particular modeling problems. A waste-gated turbine was modeled using the dual orifice approach, a lumped capacitance heat transfer model, and novel, physics-based pneumatic actuator mechanism model. Each submodel has been validated individually against the experimental measurements. The turbine inlet pressure and temperature and the waste-gate actuator pressure were perturbed across the full frequency range both individually and simultaneously in separate numerical investigations. The dynamic responses of turbine housing temperature, turbocharger rotor speed, waste-gate opening, mass flow, and gas temperatures/pressures were all investigated. The mass flow parameter exhibits significant dynamic behavior above 100 Hz, illustrating that the quasi-steady assumption is invalid in this frequency range. The waste-gate actuator system showed quasi-steady behavior below 10 Hz, while the mechanical inertia of the turbine attenuated fluctuations in shaft speed for frequencies between 0.1 and 10 Hz. The thermal inertia of the turbocharger housing meant that housing temperature variations were supressed at frequencies above 0.01 Hz. The results have been used to illustrate the importance of model parameters for three transient simulation scenarios (cold start, load step, and pulsating exhaust flow).
    • Download: (1.494Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      A Research on Waste-Gated Turbine Performance Under Unsteady Flow Condition

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4233724
    Collections
    • Journal of Engineering for Gas Turbines and Power

    Show full item record

    contributor authorDeng, Q.
    contributor authorBurke, R. D.
    contributor authorZhang, Q.
    contributor authorPohorelsky, Ludek
    date accessioned2017-11-25T07:15:53Z
    date available2017-11-25T07:15:53Z
    date copyright2017/24/1
    date issued2017
    identifier issn0742-4795
    identifier othergtp_139_06_062603.pdf
    identifier urihttp://138.201.223.254:8080/yetl1/handle/yetl/4233724
    description abstractTurbochargers are key components of engine air-paths that must be carefully considered during the development process. The combination of fluid, mechanical, and thermal phenomenon make the turbocharger a highly dynamic and nonlinear modeling challenge. The aim of this study is to quantify the dynamic response of the turbocharger system across a frequency spectrum from 0.003 Hz to 500 Hz, i.e., for exhaust gas pulsation in steady state, load steps, and cold start drive cycles, to validate the assumption of quasi-steady assumptions for particular modeling problems. A waste-gated turbine was modeled using the dual orifice approach, a lumped capacitance heat transfer model, and novel, physics-based pneumatic actuator mechanism model. Each submodel has been validated individually against the experimental measurements. The turbine inlet pressure and temperature and the waste-gate actuator pressure were perturbed across the full frequency range both individually and simultaneously in separate numerical investigations. The dynamic responses of turbine housing temperature, turbocharger rotor speed, waste-gate opening, mass flow, and gas temperatures/pressures were all investigated. The mass flow parameter exhibits significant dynamic behavior above 100 Hz, illustrating that the quasi-steady assumption is invalid in this frequency range. The waste-gate actuator system showed quasi-steady behavior below 10 Hz, while the mechanical inertia of the turbine attenuated fluctuations in shaft speed for frequencies between 0.1 and 10 Hz. The thermal inertia of the turbocharger housing meant that housing temperature variations were supressed at frequencies above 0.01 Hz. The results have been used to illustrate the importance of model parameters for three transient simulation scenarios (cold start, load step, and pulsating exhaust flow).
    publisherThe American Society of Mechanical Engineers (ASME)
    titleA Research on Waste-Gated Turbine Performance Under Unsteady Flow Condition
    typeJournal Paper
    journal volume139
    journal issue6
    journal titleJournal of Engineering for Gas Turbines and Power
    identifier doi10.1115/1.4035284
    journal fristpage62603
    journal lastpage062603-12
    treeJournal of Engineering for Gas Turbines and Power:;2017:;volume( 139 ):;issue: 006
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian