YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Engineering for Gas Turbines and Power
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Engineering for Gas Turbines and Power
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Oil-Free Automotive Turbochargers: Drag Friction and On-Engine Performance Comparisons to Oil-Lubricated Commercial Turbochargers

    Source: Journal of Engineering for Gas Turbines and Power:;2017:;volume( 139 ):;issue: 003::page 32301
    Author:
    Ryu, Keun
    ,
    Ashton, Zachary
    DOI: 10.1115/1.4034359
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: Oil-free bearings for automotive turbochargers (TCs) offer unique advantages eliminating oil-related catastrophic TC failures (oil coking, severe bearing wear/seizure, and significant oil leakage, for example), while increasing overall system reliability and reducing maintenance costs. The main objective of the current investigation is to advance the technology of the gas foil bearings (GFBs) for automotive TCs by demonstrating their reliability, durability, and static/dynamic force characteristics desirable in extreme speed and temperature conditions. The paper compares drag friction and on-engine performances of an oil-free TC supported on GFBs against an oil-lubricated commercial production TC with identical compressor and turbine wheels. Extensive coastdown and fast acceleration TC rotor speed tests are conducted in a cold air-driven high-speed test cell. Rotor speed coastdown tests demonstrate that the differences in the identified rotational viscous drag coefficients and drag torques between the oil-free and production TCs are quite similar. In addition, rotor acceleration tests show that the acceleration torque of the oil-free TC rotor, when airborne, is larger than the production TC rotor due to the large mass and moment of inertia of the oil-free TC rotor even though air has lower viscosity than the TC lubricant oil. Separate experiments of the oil-free TC installed on a diesel engine demonstrate the reliable dynamic-forced performance and superior rotor dynamic stability of the oil-free TC over the oil-lubricated TC. The post on-engine test inspection of the oil-free TC test hardware reveals no evidence of significant surface wear between the rotor and bearings, as well as no dimensional changes in the rotor outer surfaces and bearing top foil inner surfaces. The present experimental characterization and verified robustness of the oil-free TC system continue to extend the GFB knowledge database.
    • Download: (8.645Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Oil-Free Automotive Turbochargers: Drag Friction and On-Engine Performance Comparisons to Oil-Lubricated Commercial Turbochargers

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4233640
    Collections
    • Journal of Engineering for Gas Turbines and Power

    Show full item record

    contributor authorRyu, Keun
    contributor authorAshton, Zachary
    date accessioned2017-11-25T07:15:43Z
    date available2017-11-25T07:15:43Z
    date copyright2016/27/9
    date issued2017
    identifier issn0742-4795
    identifier othergtp_139_03_032301.pdf
    identifier urihttp://138.201.223.254:8080/yetl1/handle/yetl/4233640
    description abstractOil-free bearings for automotive turbochargers (TCs) offer unique advantages eliminating oil-related catastrophic TC failures (oil coking, severe bearing wear/seizure, and significant oil leakage, for example), while increasing overall system reliability and reducing maintenance costs. The main objective of the current investigation is to advance the technology of the gas foil bearings (GFBs) for automotive TCs by demonstrating their reliability, durability, and static/dynamic force characteristics desirable in extreme speed and temperature conditions. The paper compares drag friction and on-engine performances of an oil-free TC supported on GFBs against an oil-lubricated commercial production TC with identical compressor and turbine wheels. Extensive coastdown and fast acceleration TC rotor speed tests are conducted in a cold air-driven high-speed test cell. Rotor speed coastdown tests demonstrate that the differences in the identified rotational viscous drag coefficients and drag torques between the oil-free and production TCs are quite similar. In addition, rotor acceleration tests show that the acceleration torque of the oil-free TC rotor, when airborne, is larger than the production TC rotor due to the large mass and moment of inertia of the oil-free TC rotor even though air has lower viscosity than the TC lubricant oil. Separate experiments of the oil-free TC installed on a diesel engine demonstrate the reliable dynamic-forced performance and superior rotor dynamic stability of the oil-free TC over the oil-lubricated TC. The post on-engine test inspection of the oil-free TC test hardware reveals no evidence of significant surface wear between the rotor and bearings, as well as no dimensional changes in the rotor outer surfaces and bearing top foil inner surfaces. The present experimental characterization and verified robustness of the oil-free TC system continue to extend the GFB knowledge database.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleOil-Free Automotive Turbochargers: Drag Friction and On-Engine Performance Comparisons to Oil-Lubricated Commercial Turbochargers
    typeJournal Paper
    journal volume139
    journal issue3
    journal titleJournal of Engineering for Gas Turbines and Power
    identifier doi10.1115/1.4034359
    journal fristpage32301
    journal lastpage032301-10
    treeJournal of Engineering for Gas Turbines and Power:;2017:;volume( 139 ):;issue: 003
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian