Show simple item record

contributor authorRyu, Keun
contributor authorAshton, Zachary
date accessioned2017-11-25T07:15:43Z
date available2017-11-25T07:15:43Z
date copyright2016/27/9
date issued2017
identifier issn0742-4795
identifier othergtp_139_03_032301.pdf
identifier urihttp://138.201.223.254:8080/yetl1/handle/yetl/4233640
description abstractOil-free bearings for automotive turbochargers (TCs) offer unique advantages eliminating oil-related catastrophic TC failures (oil coking, severe bearing wear/seizure, and significant oil leakage, for example), while increasing overall system reliability and reducing maintenance costs. The main objective of the current investigation is to advance the technology of the gas foil bearings (GFBs) for automotive TCs by demonstrating their reliability, durability, and static/dynamic force characteristics desirable in extreme speed and temperature conditions. The paper compares drag friction and on-engine performances of an oil-free TC supported on GFBs against an oil-lubricated commercial production TC with identical compressor and turbine wheels. Extensive coastdown and fast acceleration TC rotor speed tests are conducted in a cold air-driven high-speed test cell. Rotor speed coastdown tests demonstrate that the differences in the identified rotational viscous drag coefficients and drag torques between the oil-free and production TCs are quite similar. In addition, rotor acceleration tests show that the acceleration torque of the oil-free TC rotor, when airborne, is larger than the production TC rotor due to the large mass and moment of inertia of the oil-free TC rotor even though air has lower viscosity than the TC lubricant oil. Separate experiments of the oil-free TC installed on a diesel engine demonstrate the reliable dynamic-forced performance and superior rotor dynamic stability of the oil-free TC over the oil-lubricated TC. The post on-engine test inspection of the oil-free TC test hardware reveals no evidence of significant surface wear between the rotor and bearings, as well as no dimensional changes in the rotor outer surfaces and bearing top foil inner surfaces. The present experimental characterization and verified robustness of the oil-free TC system continue to extend the GFB knowledge database.
publisherThe American Society of Mechanical Engineers (ASME)
titleOil-Free Automotive Turbochargers: Drag Friction and On-Engine Performance Comparisons to Oil-Lubricated Commercial Turbochargers
typeJournal Paper
journal volume139
journal issue3
journal titleJournal of Engineering for Gas Turbines and Power
identifier doi10.1115/1.4034359
journal fristpage32301
journal lastpage032301-10
treeJournal of Engineering for Gas Turbines and Power:;2017:;volume( 139 ):;issue: 003
contenttypeFulltext


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record