YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Engineering for Gas Turbines and Power
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Engineering for Gas Turbines and Power
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Experimental Study on the Friction Contact Between a Labyrinth Seal Fin and a Honeycomb Stator

    Source: Journal of Engineering for Gas Turbines and Power:;2016:;volume( 138 ):;issue: 006::page 62501
    Author:
    Pychynski, Tim
    ,
    Hأ¶fler, Corina
    ,
    Bauer, Hans
    DOI: 10.1115/1.4031791
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: This paper presents results from an extensive experimental study on the rubbing behavior of labyrinth seal fins (SFs) and a honeycomb liner. The objective of the present work is to improve the understanding of the rub behavior of labyrinth seals by quantifying the effects and interactions of sliding speed, incursion rate, seal geometry, and SF rub position on the honeycomb liner. In order to reduce the complexity of the friction system studied, this work focuses on the contact between a single SF and a single metal foil. The metal foil is positioned in parallel to the SF to represent contact between the SF and the honeycomb double foil section. A special test rig was set up enabling the radial incursion of a metal foil into a rotating labyrinth SF at a defined incursion rate of up to 0.65 mm/s and friction velocities up to 165 m/s. Contact forces, friction temperatures, and wear were measured during or after the rub event. In total, 88 rub tests including several repetitions of each rub scenario have been conducted to obtain a solid data base. The results show that rub forces are mainly a function of the rub parameters incursion rate and friction velocity. Overall, the results demonstrate a strong interaction between contact forces, friction temperature, and wear behavior of the rub system. The presented tests confirm basic qualitative observations regarding blade rubbing provided in literature.
    • Download: (2.998Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Experimental Study on the Friction Contact Between a Labyrinth Seal Fin and a Honeycomb Stator

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/161105
    Collections
    • Journal of Engineering for Gas Turbines and Power

    Show full item record

    contributor authorPychynski, Tim
    contributor authorHأ¶fler, Corina
    contributor authorBauer, Hans
    date accessioned2017-05-09T01:28:32Z
    date available2017-05-09T01:28:32Z
    date issued2016
    identifier issn1528-8919
    identifier othergtp_138_06_062501.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/161105
    description abstractThis paper presents results from an extensive experimental study on the rubbing behavior of labyrinth seal fins (SFs) and a honeycomb liner. The objective of the present work is to improve the understanding of the rub behavior of labyrinth seals by quantifying the effects and interactions of sliding speed, incursion rate, seal geometry, and SF rub position on the honeycomb liner. In order to reduce the complexity of the friction system studied, this work focuses on the contact between a single SF and a single metal foil. The metal foil is positioned in parallel to the SF to represent contact between the SF and the honeycomb double foil section. A special test rig was set up enabling the radial incursion of a metal foil into a rotating labyrinth SF at a defined incursion rate of up to 0.65 mm/s and friction velocities up to 165 m/s. Contact forces, friction temperatures, and wear were measured during or after the rub event. In total, 88 rub tests including several repetitions of each rub scenario have been conducted to obtain a solid data base. The results show that rub forces are mainly a function of the rub parameters incursion rate and friction velocity. Overall, the results demonstrate a strong interaction between contact forces, friction temperature, and wear behavior of the rub system. The presented tests confirm basic qualitative observations regarding blade rubbing provided in literature.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleExperimental Study on the Friction Contact Between a Labyrinth Seal Fin and a Honeycomb Stator
    typeJournal Paper
    journal volume138
    journal issue6
    journal titleJournal of Engineering for Gas Turbines and Power
    identifier doi10.1115/1.4031791
    journal fristpage62501
    journal lastpage62501
    identifier eissn0742-4795
    treeJournal of Engineering for Gas Turbines and Power:;2016:;volume( 138 ):;issue: 006
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian