YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Electronic Packaging
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Electronic Packaging
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Experimental Investigation of Air Flow Through a Perforated Tile in a Raised Floor Data Center

    Source: Journal of Electronic Packaging:;2015:;volume( 137 ):;issue: 001::page 11011
    Author:
    Arghode, Vaibhav K.
    ,
    Joshi, Yogendra
    DOI: 10.1115/1.4028835
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: Raised floor data centers supply cold air from a pressurized plenum to the server racks through perforated floor tiles. Hence, the design of an efficient air delivery scheme requires better understanding of the flow features, through and above the perforated tiles. Different tiles with circular pores in a staggered arrangement and with the same thickness are considered. Tile sheet porosities of 23% and 40%, air flow rates of 0.56 m3/s (1177 CFM) and 0.83 m3/s (1766 CFM), and pore sizes of 3.18 mm (1/8 in.) and 6.35 mm (1/4 in.) are investigated. Tiles with 38.1 mm (1.5 in.) region blocked along the edges is compared to the base case with 12.7 mm (0.5 in.) blocked edges. Width reduced to 0.46 m (1.5 ft) from standard width of 0.61 m (2 ft) is also examined. Reduced tile width is used to simulate 0.91 m (3 ft) cold aisle instead of standard 1.22 m (4 ft) cold aisle, with potential to save floor space. A case where the rack is recessed by 76.2 mm (3 in.) from the tile edge is also included in the investigation, as there is a possibility of having racks nonadjacent to the tile edges. Particle image velocimetry (PIV) technique is used to characterize the flow field emerging from a perforated tile and entering the adjacent rack. Experiments suggest that lower tile porosity significantly increases cold air bypass from the top, possibly due to higher air jet momentum above the tile, as compared to a tile with higher porosity. For the air flow rates investigated here, the flow field was nearly identical and influence of flow rate was nondistinguishable. The influence of pore size was nonnegligible, even when the porosity and flow rate for the two cases were same. Larger blockage of the tile edges resulted in higher cold air bypass from the top. Reduction in the tile width showed improved air delivery to the rack with considerably reduced cold air bypass. Recessing the rack did not affect the flow field significantly.
    • Download: (2.829Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Experimental Investigation of Air Flow Through a Perforated Tile in a Raised Floor Data Center

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/157672
    Collections
    • Journal of Electronic Packaging

    Show full item record

    contributor authorArghode, Vaibhav K.
    contributor authorJoshi, Yogendra
    date accessioned2017-05-09T01:16:55Z
    date available2017-05-09T01:16:55Z
    date issued2015
    identifier issn1528-9044
    identifier otherep_137_01_011011.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/157672
    description abstractRaised floor data centers supply cold air from a pressurized plenum to the server racks through perforated floor tiles. Hence, the design of an efficient air delivery scheme requires better understanding of the flow features, through and above the perforated tiles. Different tiles with circular pores in a staggered arrangement and with the same thickness are considered. Tile sheet porosities of 23% and 40%, air flow rates of 0.56 m3/s (1177 CFM) and 0.83 m3/s (1766 CFM), and pore sizes of 3.18 mm (1/8 in.) and 6.35 mm (1/4 in.) are investigated. Tiles with 38.1 mm (1.5 in.) region blocked along the edges is compared to the base case with 12.7 mm (0.5 in.) blocked edges. Width reduced to 0.46 m (1.5 ft) from standard width of 0.61 m (2 ft) is also examined. Reduced tile width is used to simulate 0.91 m (3 ft) cold aisle instead of standard 1.22 m (4 ft) cold aisle, with potential to save floor space. A case where the rack is recessed by 76.2 mm (3 in.) from the tile edge is also included in the investigation, as there is a possibility of having racks nonadjacent to the tile edges. Particle image velocimetry (PIV) technique is used to characterize the flow field emerging from a perforated tile and entering the adjacent rack. Experiments suggest that lower tile porosity significantly increases cold air bypass from the top, possibly due to higher air jet momentum above the tile, as compared to a tile with higher porosity. For the air flow rates investigated here, the flow field was nearly identical and influence of flow rate was nondistinguishable. The influence of pore size was nonnegligible, even when the porosity and flow rate for the two cases were same. Larger blockage of the tile edges resulted in higher cold air bypass from the top. Reduction in the tile width showed improved air delivery to the rack with considerably reduced cold air bypass. Recessing the rack did not affect the flow field significantly.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleExperimental Investigation of Air Flow Through a Perforated Tile in a Raised Floor Data Center
    typeJournal Paper
    journal volume137
    journal issue1
    journal titleJournal of Electronic Packaging
    identifier doi10.1115/1.4028835
    journal fristpage11011
    journal lastpage11011
    identifier eissn1043-7398
    treeJournal of Electronic Packaging:;2015:;volume( 137 ):;issue: 001
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian