YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Engineering for Gas Turbines and Power
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Engineering for Gas Turbines and Power
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    A Numerical Study on the Effect of Bleed System on Starting Ability and Flow Performance of Rampressor Inlet

    Source: Journal of Engineering for Gas Turbines and Power:;2014:;volume( 136 ):;issue: 012::page 122601
    Author:
    Kang, Weijia
    ,
    Liu, Zhansheng
    ,
    Wang, Yu
    ,
    Dong, Yanyang
    ,
    Sun, Yong
    DOI: 10.1115/1.4027761
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: A unique supersonic compressor rotor with high pressure ratio, termed the Rampressor, is presented by Ramgen Power Systems, Inc., (RPS). Based on the models of Rampressor inlet, the inlet flow field with bleed system is numerically studied. Validation of the employed computational fluid dynamics (CFD) scheme is provided through test cases. The effects of boundary layer bleed location and bleed amount on Rampressor rotor inlet start and flow performance are analyzed. The results indicate that the boundary layer bleed has a significant effect for start and flow performance of Rampressor inlet. Boundary layer bleed technique has been applied to eliminate the emerging flow separation zone for enhancing Rampressor rotor inlet performance and enlarging its stable working range. The starting ability and flow performance of Rampressor inlet are efficiently improved by bleeding system, but the improvement effect is different for Rampressor inlet with different bleed location. Along the position of bleeding system moves forward, the range of Rampressor inlet normal work rotation speed is enlarged. The flow performance of Rampressor inlet improves obviously with the increment of bleed flow rate, and exit stability of Rampressor inlet enhances. And in the same back pressure work condition of Rampressor inlet, bleed system has been shown to be effective that exit stability of Rampressor inlet ameliorates, but the loss of compressed air from the bleed system has a negative effect on overall Rampressor inlet efficiency.
    • Download: (2.315Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      A Numerical Study on the Effect of Bleed System on Starting Ability and Flow Performance of Rampressor Inlet

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/154871
    Collections
    • Journal of Engineering for Gas Turbines and Power

    Show full item record

    contributor authorKang, Weijia
    contributor authorLiu, Zhansheng
    contributor authorWang, Yu
    contributor authorDong, Yanyang
    contributor authorSun, Yong
    date accessioned2017-05-09T01:08:11Z
    date available2017-05-09T01:08:11Z
    date issued2014
    identifier issn1528-8919
    identifier othergtp_136_12_122601.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/154871
    description abstractA unique supersonic compressor rotor with high pressure ratio, termed the Rampressor, is presented by Ramgen Power Systems, Inc., (RPS). Based on the models of Rampressor inlet, the inlet flow field with bleed system is numerically studied. Validation of the employed computational fluid dynamics (CFD) scheme is provided through test cases. The effects of boundary layer bleed location and bleed amount on Rampressor rotor inlet start and flow performance are analyzed. The results indicate that the boundary layer bleed has a significant effect for start and flow performance of Rampressor inlet. Boundary layer bleed technique has been applied to eliminate the emerging flow separation zone for enhancing Rampressor rotor inlet performance and enlarging its stable working range. The starting ability and flow performance of Rampressor inlet are efficiently improved by bleeding system, but the improvement effect is different for Rampressor inlet with different bleed location. Along the position of bleeding system moves forward, the range of Rampressor inlet normal work rotation speed is enlarged. The flow performance of Rampressor inlet improves obviously with the increment of bleed flow rate, and exit stability of Rampressor inlet enhances. And in the same back pressure work condition of Rampressor inlet, bleed system has been shown to be effective that exit stability of Rampressor inlet ameliorates, but the loss of compressed air from the bleed system has a negative effect on overall Rampressor inlet efficiency.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleA Numerical Study on the Effect of Bleed System on Starting Ability and Flow Performance of Rampressor Inlet
    typeJournal Paper
    journal volume136
    journal issue12
    journal titleJournal of Engineering for Gas Turbines and Power
    identifier doi10.1115/1.4027761
    journal fristpage122601
    journal lastpage122601
    identifier eissn0742-4795
    treeJournal of Engineering for Gas Turbines and Power:;2014:;volume( 136 ):;issue: 012
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian